Максимальная энергия магнитного и электрического поля. Энергия магнитного поля определение. Взаимодействие двух магнитов

Энергия магнитного поля.

Магни́тное по́ле - силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, магнитная составляющая электромагнитного поля

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Энергия магнитного поля , создаваемого током в замкнутом контуре индуктивностью L, равна где I - сила тока в контуре.

Энергия магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Энергия магнитного поля

Проводник, по которому протекает электрический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезновением тока. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затрачивается током на создание этого поля.

L, по которому течет ток I . С данным контуром сцеплен магнитный поток (см. (126.1)) Ф=LI, I L dI А=I =LI dI.

Так как I=Bl/ (m 0 mN ) (см. (119.2)) и В=m 0 mH (см. (109.3)), то

(130.2)

где Sl = V - объем соленоида.

(130.3)

В от Н линейная, т.е. оно относится только к пара- и диамагнетикам.

Энергия электромагнитного поля

Эне́ргия электромагни́тного по́ля - энергия, заключенная в электромагнитном поле[источник не указан 1754 дня ]. Сюда же относятся частные случаи чистого электрического и чистого магнитного поля.

Работа электрического поля по перемещению заряда

Понятие работы A {\displaystyle A} электрического поля E {\displaystyle E} по перемещению заряда Q {\displaystyle Q} вводится в полном соответствии с определением механической работы:

A = ∫ F (x) d x = ∫ Q ⋅ E (x) d x = Q ⋅ U {\displaystyle A=\int F(x)\,dx=\int Q\cdot E(x)\,dx=Q\cdot U}

где U = ∫ E d x {\displaystyle U=\int E\,dx} - разность потенциалов (также употребляется термин напряжение).

Во многих задачах рассматривается непрерывный перенос заряда в течение некоторого времени между точками с заданной разностью потенциалов U (t) {\displaystyle U(t)} , в таком случае формулу для работы следует переписать следующим образом:

A = ∫ U (t) d Q = ∫ U (t) I (t) d t {\displaystyle A=\int U(t)\,dQ=\int U(t)I(t)\,dt}

где I (t) = d Q d t {\displaystyle I(t)={dQ \over dt}} - сила тока.

Мощность электрического тока в цепи

Мощность W {\displaystyle W} электрического тока для участка цепи определяется обычным образом, как производная от работы A {\displaystyle A} по времени, то есть выражением:

W (t) = d A d t = U (t) ⋅ I (t) {\displaystyle W(t)={\frac {dA}{dt}}=U(t)\cdot I(t)}

Это наиболее общее выражение для мощности в электрической цепи.

С учётом закона Ома

U = I ⋅ R {\displaystyle U=I\cdot R}

электрическую мощность, выделяемую на сопротивлении R {\displaystyle R} , можно выразить как через ток

W = I (t) 2 ⋅ R {\displaystyle W=I(t)^{2}\cdot R} ,

так и через напряжение:

W = U (t) 2 R {\displaystyle W={{U(t)^{2}} \over R}}

Соответственно, работа (выделившаяся теплота) является интегралом мощности по времени:

A = ∫ W (t) d t = ∫ I (t) 2 ⋅ R d t = ∫ U (t) 2 R d t {\displaystyle A=\int W(t)\,dt=\int I(t)^{2}\cdot R\,dt=\int {{U(t)^{2}} \over R}\,dt}

Энергия электрического и магнитного полей

Для электрического и магнитного полей их энергия пропорциональна квадрату напряжённости поля. Строго говоря, термин «энергия электромагнитного поля» является не вполне корректным. Вместо него в физике обычно используют понятие плотности энергии электромагнитного поля (в определённой точке пространства). Общая энергия поля равняется интегралу плотности энергии по всему пространству.

Плотность энергии электромагнитного поля является суммой плотностей энергий электрического и магнитного полей.

В системе СИ:

U = E ⋅ D 2 + B ⋅ H 2 {\displaystyle u={\frac {\mathbf {E} \cdot \mathbf {D} }{2}}+{\frac {\mathbf {B} \cdot \mathbf {H} }{2}}}

В вакууме (а также в веществе при рассмотрении микрополей):

U = ε 0 E 2 2 + B 2 2 μ 0 = ε 0 E 2 + c 2 B 2 2 = E 2 / c 2 + B 2 2 μ 0 {\displaystyle u={\varepsilon _{0}E^{2} \over 2}+{B^{2} \over {2\mu _{0}}}=\varepsilon _{0}{\frac {E^{2}+c^{2}B^{2}}{2}}={\frac {E^{2}/c^{2}+B^{2}}{2\mu _{0}}}}

где E - напряжённость электрического поля, B - магнитная индукция, D - электрическая индукция, H - напряжённость магнитного поля, с - скорость света, ε 0 {\displaystyle \varepsilon _{0}} - электрическая постоянная и μ 0 {\displaystyle \mu _{0}} - магнитная постоянная. Иногда для констант ε 0 {\displaystyle \varepsilon _{0}} и μ 0 {\displaystyle \mu _{0}} - используют термины диэлектрическая проницаемость и магнитная проницаемость вакуума, - которые являются крайне неудачными, и сейчас почти не употребляются.

В системе СГС:

U = E ⋅ D + B ⋅ H 8 π {\displaystyle u={\frac {\mathbf {E} \cdot \mathbf {D} +\mathbf {B} \cdot \mathbf {H} }{8\pi }}}

Энергия электромагнитного поля в колебательном контуре

Энергия электромагнитного поля в колебательном контуре:

W = C U 2 2 + L I 2 2 {\displaystyle W={\frac {CU^{2}}{2}}+{\frac {LI^{2}}{2}}}

U - электрическое напряжение в цепи, C - электроемкость конденсатора, I - сила тока, L - индуктивность катушки или витка с током.

Потоки энергии электромагнитного поля

Основная статья: Вектор Пойнтинга

Для электромагнитной волны плотность потока энергии определяется вектором Пойнтинга S (в русской научной традиции - вектор Умова - Пойнтинга).

В системе СИ вектор Пойнтинга равен S = E × H {\displaystyle \mathbf {S} =\mathbf {E} \times \mathbf {H} } (векторному произведению напряжённостей электрического и магнитного полей) и направлен перпендикулярно векторам E и H. Это естественным образом согласуется со свойством поперечности электромагнитных волн.

Вместе с тем, формула для плотности потока энергии может быть обобщена для случая стационарных электрических и магнитных полей и имеет тот же вид: S = E × H {\displaystyle \mathbf {S} =\mathbf {E} \times \mathbf {H} } .

Факт существования потоков энергии в постоянных электрических и магнитных полях может выглядеть странно, но не приводит к каким-либо парадоксам; более того, такие потоки обнаруживаются в эксперименте.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Энергию магнитного поля катушки индуктивности можно вычислить следующим способом. Для упрощения расчета рассмотрим такой случай, когда после отключения катушки от источника ток в цепи убывает со временем по линейному закону. В этом случае ЭДС самоиндукции имеет постоянное значение, равное


,

где t – промежуток времени, за который сила тока в цепи убывает от начального значения I до 0.

За время t при линейном убывании силы тока от I до 0 в цепи проходит электрический заряд:


,

поэтому работа электрического тока равна


Эта работа совершается за счет энергии магнитного поля катушки. Энергия магнитного поля катушки индуктивности равна половине произведения ее индуктивности на квадрат силы тока в ней:


  1. Уравнение Максвелла. Электромагнитные волны.

Согласно теории Максвелла, переменное магнитное поле вызывает появление переменного вихревого эл. поля, которое, в свою очередь, вызывает появление переменного магнитного поля и т.д. Таким образом происходит распространение электромагнитных возмущений в пространстве т.е. распространяется электромагнитная волна. Основные свойства электромагнитных волн. 1. Электромагнитная волна – поперечная. 2. Скорость электромагнитных волн в вакууме равна v=c=3*108м/с и совпадает со скоростью света. В среде v=c/(), где  и  - диэлектрическая и магнитная проницаемости среды. 3. Электромагнитные волны переносят энергию. 4. Электромагнитные волны отражаются от проводящих поверхностей и преломляются на границе двух диэлектриков. 5. Электромагнитные волны оказывают давление на тела. 6. Если электромагнитная волна оказывает давление на тела, т.е. сообщает им импульс, следовательно, она также обладает импульсом. 7. Наблюдается дифракция, интерференция и поляризация электромагнитных волн.

М а ксвелла уравн е ния, фундаментальные уравнения классической макроскопической электродинамики , описывающие электромагнитные явления в произвольной среде. М. у. сформулированы Дж. К. Максвеллом в 60-х годах 19 века на основе обобщения эмпирических законов электрических и магнитных явлений. Опираясь на эти законы и развивая плодотворную идею М. Фарадея о том, что взаимодействия между электрически заряженными телами осуществляются посредством электромагнитного поля , Максвелл создал теорию электромагнитных процессов, математически выражаемую М. у. Современная форма М. у. дана немецким физиком Г. Герцем и английским физиком О. Хевисайдом .

М. у. связывают величины, характеризующие электромагнитное поле, с его источниками, то есть с распределением в пространстве электрических зарядов и токов. В пустоте электромагнитное поле характеризуется двумя векторными величинами, зависящими от пространственных координат и времени: напряжённостью электрического поля Е и магнитной индукцией В . Эти величины определяют силы, действующие со стороны поля на заряды и токи, распределение которых в пространстве задаётся плотностью заряда r (зарядом в единице объёма) и плотностью тока j (зарядом, переносимым в единицу времени через единичную площадку, перпендикулярную направлению движения зарядов). Для описания электромагнитных процессов в материальной среде (в веществе), кроме векторов Е и В , вводятся вспомогательные векторные величины, зависящие от состояния и свойств среды: электрическая индукция D и напряжённость магнитного поля Н .

М. у. позволяют определить основные характеристики поля (Е, В, D и Н ) в каждой точке пространства в любой момент времени, если известны источники поля j и r как функции координат и времени. М. у. могут быть записаны в интегральной или в дифференциальной форме (ниже они даны в абсолютной системе единиц Гаусса; см. СГС система единиц ).

М. у. в интегральной форме определяют по заданным зарядам и токам не сами векторы поля Е, В, D, Н в отдельных точках пространства, а некоторые интегральные величины, зависящие от распределения этих характеристик поля: циркуляцию векторов Е и Н вдоль произвольных замкнутых контуров и потоки векторов D и B через произвольные замкнутые поверхности.

Первое М. у. является обобщением на переменные поля эмпирического Ампера закона о возбуждении магнитного поля электрическими токами. Максвелл высказал гипотезу, что магнитное поле порождается не только токами, текущими в проводниках, но и переменными электрическими полями в диэлектриках или вакууме. Величина, пропорциональная скорости изменения электрического поля во времени, была названа Максвеллом током смещения. Ток смещения возбуждает магнитное поле по тому же закону, что и ток проводимости (позднее это было подтверждено экспериментально). Полный ток, равный сумме тока проводимости и тока смещения, всегда является замкнутым.

Первое М. у. имеет вид:

, (1, a)

то есть циркуляция вектора напряжённости магнитного поля вдоль замкнутого контура L (сумма скалярных произведений вектора Н в данной точке контура на бесконечно малый отрезок dl контура) определяется полным током через произвольную поверхность S j n - проекция плотности тока проводимости j на нормаль к бесконечно малой площадкеds , являющейся частью поверхности S, - проекция плотности тока смещения на ту же нормаль, а с = 3×1010 см/сек - постоянная, равная скорости распространения электромагнитных взаимодействий в вакууме.

Второе М. у. является математической формулировкой закона электромагнитной индукции Фарадея (см. Индукция электромагнитная ) записывается в виде:

то есть циркуляция вектора напряжённости электрического поля вдоль замкнутого контура L (эдс индукции) определяется скоростью изменения потока вектора магнитной индукции через поверхность S , ограниченную данным контуром. Здесь B n - проекция на нормаль к площадке ds вектора магнитной индукции В ; знак минус соответствует Ленца правилу для направления индукционного тока.

Третье М. у. выражает опытные данные об отсутствии магнитных зарядов, аналогичных электрическим (магнитное поле порождается только токами):

то есть поток вектора магнитной индукции через произвольную замкнутую поверхность S равен нулю.

Четвёртое М. у. (обычно называемое Гаусса теоремой ) представляет собой обобщение закона взаимодействия неподвижных электрических зарядов - Кулона закона :

, (1, г)

то есть поток вектора электрической индукции через произвольную замкнутую поверхность S определяется электрическим зарядом, находящимся внутри этой поверхности (в объёме V , ограниченном данной поверхностью).

Если считать, что векторы электромагнитного поля (Е, В, D, Н ) являются непрерывными функциями координат, то, рассматривая циркуляцию векторов Н и Е по бесконечно малым контурам и потоки векторов B и D через поверхности, ограничивающие бесконечно малые объёмы, можно от интегральных соотношений (1, а - г) перейти к системе дифференциальных уравнений, справедливых в каждой точке пространства, то есть получить дифференциальную форму М. у. (обычно более удобную для решения различных задач):

rot ,

Здесь rot и div - дифференциальные операторы ротор (см. Вихрь ) и дивергенция , действующие на векторы Н , Е , B и D . Физический смысл уравнений (2) тот же, что и уравнений (1).

М. у. в форме (1) или (2) не образуют полной замкнутой системы, позволяющей рассчитывать электромагнитные процессы при наличии материальной среды. Необходимо их дополнить соотношениями, связывающими векторы Е, Н, D, В и j , которые не являются независимыми. Связь между этими векторами определяется свойствами среды и её состоянием, причёмD и j выражаются через Е , а B - через Н :

D = D (E ), B = B (Н ), j = j (E ). (3)

Эти три уравнения называются уравнениями состояния, или материальными уравнениями; они описывают электромагнитные свойства среды и для каждой конкретной среды имеют определённую форму. В вакууме D ºЕ и B º Н . Совокупность уравнений поля (2) и уравнений состояния (3) образуют полную систему уравнений.

Макроскопические М. у. описывают среду феноменологически, не рассматривая сложного механизма взаимодействия электромагнитного поля с заряженными частицами среды. М. у. могут быть получены из Лоренца - Максвелла уравнений для микроскопических полей и определённых представлений о строении вещества путём усреднения микрополей по малым пространственно-временным интервалам. Таким способом получаются как основные уравнения поля (2), так и конкретная форма уравнений состояния (3), причём вид уравнений поля не зависит от свойств среды.

Уравнения состояния в общем случае очень сложны, так как векторы D , B и j в данной точке пространства в данный момент времени могут зависеть от полей Е и Н во всех точках среды во все предшествующие моменты времени. В некоторых средах векторы D и B могут быть отличными от нуля при Е и H равных нулю (сегнетоэлектрики и ферромагнетики ). Однако для большинства изотропных сред, вплоть до весьма значительных полей, уравнения состояния имеют простую линейную форму:

D = eE , B = mH , j = sE + j cтр. (4)

Здесь e (x, у, z ) - диэлектрическая проницаемость , а m (x, у, z ) - магнитная проницаемость среды, характеризующие соответственно её электрические и магнитные свойства (в выбранной системе единиц для вакуума e = m = 1); величина s(x, у, z ) называется удельной электропроводностью; j cтр - плотность так называемых сторонних токов, то есть токов, поддерживаемых любыми силами, кроме сил электрического поля (например, магнитным полем, диффузией и т. д.). В феноменологической теории Максвелла макроскопические характеристики электромагнитных свойств среды e, m и s должны быть найдены экспериментально. В микроскопической теории Лоренца - Максвелла они могут быть рассчитаны.

Проницаемости e и m фактически определяют тот вклад в электромагнитное поле, который вносят так называемые связанные заряды, входящие в состав электрически нейтральных атомов и молекул вещества. Экспериментальное определение e, m, s позволяет рассчитывать электромагнитное поле в среде, не решая трудную вспомогательную задачу о распределении связанных зарядов и соответствующих им токов в веществе. Плотность заряда r и плотность токаj в М. у. - это плотности свободных зарядов и токов, причём вспомогательные векторы Н и D вводятся так, чтобы циркуляция вектора Н определялась только движением свободных зарядов, а поток вектора D - плотностью распределения этих зарядов в пространстве.

Если электромагнитное поле рассматривается в двух граничащих средах, то на поверхности их раздела векторы поля могут претерпевать разрывы (скачки); в этом случае уравнения (2) должны быть дополнены граничными условиями:

[nH ] 2 - [nH ] 1 = ,

[nE ] 2 - [nE ] 1 = 0, (5)

(nD ) 2 - (nD ) 1 = 4ps,

(nB ) 2 - (nB ) 1 = 0.

Здесь j пов и s - плотности поверхностных тока и заряда, квадратные и круглые скобки - соответственно векторное и скалярное произведения векторов, n - единичный вектор нормали к поверхности раздела в направлении от первой среды ко второй (1®2), а индексы относятся к разным сторонам границы раздела.

Основные уравнения для поля (2) линейны, уравнения же состояния (3) могут быть и нелинейными. Обычно нелинейные эффекты обнаруживаются в достаточно сильных полях. В линейных средах [удовлетворяющих соотношениям (4)] и, в частности, в вакууме М. у. линейны и, таким образом, оказывается справедливым суперпозиции принцип : при наложении полей они не оказывают влияния друг на друга.

Из М. у. вытекает ряд законов сохранения. В частности, из уравнений (1, а) и (1, г) можно получить соотношение (так называемое уравнение непрерывности):

представляющее собой закон сохранения электрического заряда: полный ток, протекающий за единицу времени через любую замкнутую поверхность S , равен изменению заряда внутри объёма V , ограниченного этой поверхностью. Если ток через поверхность отсутствует, то заряд в объёме остаётся неизменным.

Из М. у. следует, что электромагнитное поле обладает энергией и импульсом (количеством движения). Плотность энергии w (энергии единицы объёма поля) равна:

Электромагнитная энергия может перемещаться в пространстве. Плотность потока энергии определяется так называемым вектором Пойнтинга

Направление вектора Пойнтинга перпендикулярно как Е , так и Н и совпадает с направлением распространения электромагнитной энергии, а его величина равна энергии, переносимой в единицу времени через единицу поверхности, перпендикулярной к вектору П . Если не происходит превращений электромагнитной энергии в другие формы, то, согласно М. у., изменение энергии в некотором объёме за единицу времени равно потоку электромагнитной энергии через поверхность, ограничивающую этот объём. Если внутри объёма за счёт электромагнитной энергии выделяется тепло, то закон сохранения энергии записывается в форме:

где Q - количество теплоты, выделяемой в единицу времени.

Плотность импульса электромагнитного поля g (импульс единицы объёма поля) связана с плотностью потока энергии соотношением:

Существование импульса электромагнитного поля впервые было обнаружено экспериментально в опытах П. Н. Лебедева по измерению давления света (1899).

Как видно из (7), (8) и (10), электромагнитное поле всегда обладает энергией, а поток энергии и электромагнитный импульс отличны от нуля лишь в случае, когда одновременно существуют и электрическое и магнитное поля (причём эти поля не параллельны друг другу).

М. у. приводят к фундаментальному выводу о конечности скорости распространения электромагнитных взаимодействий (равной с = 3×1010 см/сек ). Это означает, что при изменении плотности заряда или тока в некоторой точке пространства порождаемое ими электромагнитное поле в точке наблюдения изменяется не в тот же момент времени, а спустя время t = R/c , где R - расстояние от элемента тока или заряда до точки наблюдения. Вследствие конечной скорости распространения электромагнитных взаимодействий возможно существование электромагнитных волн , частным случаем которых (как впервые показал Максвелл) являются световые волны.

Электромагнитные явления протекают одинаково во всех инерциальных системах отсчёта , то есть удовлетворяют принципу относительности. В соответствии с этим М. у. не меняют своей формы при переходе от одной инерциальной системы отсчёта к другой (релятивистски инвариантны). Выполнение принципа относительности для электромагнитных процессов оказалось несовместимым с классическими представлениями о пространстве и времени, потребовало пересмотра этих представлений и привело к созданию специальной теории относительности (А. Эйнштейн , 1905; см. Относительности теория ). Форма М. у. остаётся неизменной при переходе к новой инерциальной системе отсчёта, если пространств, координаты и время, векторы поля Е, Н, В, D , плотность тока j и плотность заряда r изменяются в соответствии с Лоренца преобразованиями (выражающими новые, релятивистские представления о пространстве и времени). Релятивистски-инвариантная форма М. у. подчёркивает тот факт, что электрическое и магнитное поля образуют единое целое.

М. у. описывают огромную область явлений. Они лежат в основе электротехники и радиотехники и играют важнейшую роль в развитии таких актуальных направлений современной физики, как физика плазмы и проблема управляемых термоядерных реакций , магнитная гидродинамика , нелинейная оптика , конструирование ускорителей заряженных частиц , астрофизика и т. д. М. у. неприменимы лишь при больших частотах электромагнитных волн, когда становятся существенными квантовые эффекты, то есть когда энергия отдельных квантов электромагнитного поля - фотонов - велика и в процессах участвует сравнительно небольшое число фотонов.

§ 130. Энергия магнитного поля

Проводник, по которому протекает элек­трический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезно­вением тока. Магнитное поле, подобно электрическому, является носителем энер­гии. Естественно предположить, что энер­гия магнитного поля равна работе, которая затрачивается током на создание этого поля.

Рассмотрим контур индуктивностью L, по которому течет ток I . С данным контуром сцеплен магнитный поток (см. (126.1)) Ф=LI , причем при измене­нии тока на dI магнитный поток изменяет­ся на dФ=L dI . Однако для изменения магнитного потока на величину dФ (см. § 121) необходимо совершить работу dA =I dФ=LI dI. Тогда работа по созда­нию магнитного потока Ф будет равна

Следовательно, энергия магнитного поля, связанного с контуром,

W=LI 2 /2. (130.1)

Исследование свойств переменных маг­нитных полей, в частности распростране­ния электромагнитных волн, явилось до­казательством того, что энергия магнитно­го поля локализована в пространст­ве. Это соответствует представлениям те­ории поля.

Энергию магнитного поля можно пред-

ставить как функцию величин, характери­зующих это поле в окружающем простран­стве. Для этого рассмотрим частный слу­чай - однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение (126.2), получим

Так какI l / ( 0 N) (см. (119.2)) и В= 0 H (см. (109.3)), то

где Sl =V - объем соленоида.

Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью

Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (95.8) для объемной плотности энергии электроста­тического поля, с той разницей, что элек­трические величины заменены в нем маг­нитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднородных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т. е. оно относится только к пара- и диамагнетикам (см. § 132).

Контрольные вопросы

В чем заключается явление электромагнитной индукции? Проанализируйте опыты Фарадея.

Что является причиной возникновения э.д.с. индукции в замкнутом проводящем контуре? Отчего и как зависит э.д.с. индукции, возникающая в контуре?

Почему для обнаружения индукционного тока лучше использовать замкнутый проводник

в виде катушки, а не в виде одного витка провода?

Сформулируйте правило Ленца, проиллюстрировав его примерами.

Всегда ли при изменении потока магнитной индукции в проводящем контуре в нем возникает э.д.с. индукции? индукционный ток?

Возникает ли индукционный ток в проводящей рамке, поступательно движущейся в однород­ном магнитном поле?

Покажите, что закон Фарадея есть следствие закона сохранения энергии.

Какова природа э.д.с. электромагнитной индукции?

Выведите выражение для э.д.с. индукции в плоской рамке, равномерно вращающейся в одно­родном магнитном поле. За счет чего ее можно увеличить?

Что такое вихревые токи? Вредны они или полезны?

Почему сердечники трансформаторов не делают сплошными?

В чем заключаются явления самоиндукции и взаимной индукции? Вычислите э.д.с. индукции

для обоих случаев,

В чем заключается физический смысл времени релаксации =L/R Докажите, что оно имеет

размерность времени.

Приведите соотношение между токами в первичной и вторичной обмотках повышающего транс­форматора.

Когда э.д.с. самоиндукции больше - при замыкании или размыкании цепи постоянного тока?

Какая физическая величина выражается в генри? Дайте определение генри.

В чем заключается физический смысл индуктивности контура? взаимной индуктивности двух контуров? От чего они зависят?

Запишите и проанализируйте выражения для объемной плотности энергии электростатического и магнитного полей. Чему равна объемная плотность энергии электромагнитного поля?

Напряженность магнитного поля возросла в два раза. Как изменилась объемная плотность энергии магнитного поля?

Задачи

15.1. Кольцо из алюминиевого провода (=26 нОм м) помещено в магнитное поле перпендику­лярно линиям магнитной индукции. Диаметр кольца 20 см, диаметр провода 1 мм. Опреде­лить скорость изменения магнитного поля, если сила тока в кольце 0,5 А.

15.2. В однородном магнитном поле, индукция которого 0,5 Тл, равномерно с частотой 300 мин-1 вращается катушка, содержащая 200 витков, плотно прилегающих друг к другу. Площадь поперечного сечения катушки 100 см2. Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Определить максимальную э.д.с., индуцируемую в катушке. .

15.3. Определить, сколько витков проволоки, вплотную прилегающих друг к другу, диаметром 0,3 мм с изоляцией ничтожной толщины надо намотать на картонный цилиндр диаметром 1 см, чтобы получить однослойную катушку с индуктивностью 1 мГн.

15.4. Определить, через сколько времени сила тока замыкания достигнет 0,98 предельного значе­ния, если источник тока замыкают на катушку сопротивлением 10 Ом и индуктивностью 0,4 Гн.

15.5. Два соленоида (индуктивность одного L 1 =0,36 Гн, второго L 2 = 0,64 Гн) одинаковой длины и практически равного сечения вставлены один в другой. Определить взаимную индуктив­ность соленоидов.

15.6. Автотрансформатор, понижающий напряжение с U 1 =5,5 кВ до U 2 =220 В, содержит в пер­вичной обмотке N 1 = 1500витков. Сопротивление вторичной обмотки R 2 =2 Ом. Сопротивле­ние внешней цепи (в сети пониженного напряжения) R =13 Ом. Пренебрегая сопротив­лением первичной обмотки, определить число витков во вторичной обмотке трансформатора.

37 Энергия магнитного поля

Проводник, по которому протекает электрический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезнове­нием тока. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затра­чивается током на создание этого поля.

Рассмотрим контур индуктивностью L , по которому течет ток I . С данным кон­туром сцеплен магнитный поток (см. (126.1)) Ф= LI , причем при изменении тока на dI магнитный поток изменяется на dФ=L dI . Однако для изменения магнитного потока на величину dФ (см. § 121) необходимо совершить работу dА= I = LI dI . Тогда работа по созданию магнитного потока Ф будет равна


Следовательно, энергия магнитного поля, связанного с контуром,

(130.1)

Исследование свойств переменных магнитных полей, в частности распространения электромагнитных волн, явилось доказательством того, что энергия магнитного поля локализована в пространстве. Это соответствует представлениям теории поля.

Энергию магнитного поля можно представить как функцию величин, характеризу­ющих это поле в окружающем пространстве. Для этого рассмотрим частный слу­чай - однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение (126.2), получим

Так как I = Bl / ( 0 N ) (см. (119.2)) и В= 0 H (см. (109.3)), то


130.2)

где Sl = V - объем соленоида.

Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью


(130.3)

Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (95.8) для объемной плотности энергии электростатического поля, с той разницей, что электрические величины заменены в нем магнитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднород­ных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т.е. оно относится только к пара- и диамагнетикам (см. § 132).

38. Магнитные моменты электронов и атомов

Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процессами, происходящими в веществе. Свойства среды учитывались формально с помощью магнитной проницаемости . Для того чтобы разобраться в магнитных свойствах сред и их влиянии на магнитную индукцию, необходимо рассмотреть действие магнитного поля на атомы и молекулы вещества.

Опыт показывает, что все вещества, помещенные в магнитное поле, намагничива­ются. Рассмотрим причину этого явления с точки зрения строения атомов и молекул, положив в основу гипотезу Ампера (см. § 109), согласно которой в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах и молекулах.

Для качественного объяснения магнитных явлений с достаточным приближением можно считать, что электрон движется в атоме по круговым орбитам. Электрон, движущийся по одной из таких орбит, эквивалентен круговому току, поэтому он обладаеторбитальным магнитным моментом (см. (109.2)) p m =IS n , модуль которого

(131.1)

где I = e - сила тока, - частота вращения электрона по орбите, S - площадь орбиты. Если электрон движется по часовой стрелке (рис. 187), то ток направлен против часовой стрелки и вектор р m (в соответствии с правилом правого винта) направлен перпендикулярно плоскости орбиты электрона, как указано на рисунке.

С другой стороны, движущийся по орбите электрон обладает механическим момен­том импульса L e , модуль которого, согласно (19.1),

(131.2)

где v = 2 , r 2 = S. Вектор L e (его направление также определяется по правилу правого винта) называется орбитальным механическим моментом электрона .

Из рис. 187 следует, что направления р m и L e , противоположны, поэтому, учитывая выражения (131.1) и (131.2), получим


(131.3)

где величина

(131.4)

называется гиромагнитным отношением орбитальных моментов (общепринято писать со знаком «–», указывающим на то, что направления моментов противоположны). Это отношение, определяемое универсальными постоянными, одинаково для любой ор­биты, хотя для разных орбит значения v и r различны. Формула (131.4) выведена для круговой орбиты, но она справедлива и для эллиптических орбит.

Экспериментальное определение гиромагнитного отношения проведено в опытах Эйнштейна и де Гааза* (1915), которые наблюдали поворот свободно подвешенного на тончайшей кварцевой нити железного стержня при его намагничении во внешнем магнитном поле (по обмотке соленоида пропускался переменный ток с частотой, равной частоте крутильных колебаний стержня). При исследовании вынужденных крутильных колебаний стержня определялось гиромагнитное отношение, которое ока­залось равным (e / m ). Таким образом, знак носителей, обусловливающих молекуляр­ные токи, совпадал со знаком заряда электрона, а гиромагнитное отношение оказалось в два раза большим, чем введенная ранее величина g (см. (131.4)). Для объяснения этого результата, имевшего большое значение для дальнейшего развития физики, было предположено, а впоследствии доказано, что кроме орбитальных моментов (см. (131.1) и (131.2)) электрон обладает собственным механическим моментом импульса L es , называ­емым спином . Считалось, что спин обусловлен вращением электрона вокруг своей оси, что привело к целому ряду противоречий. В настоящее время установлено, что спин является неотъемлемым свойством электрона, подобно его заряду и массе. Спину электрона L es , соответствует собственный (сотовый) магнитный момент р ms , пропорци­ональный L es и направленный в противоположную сторону:

(131.5)

*В. И. де Гааз (1878-1960) - нидерландский физик.

Величина g s называетсягиромагнитным отношением спиновых моментов.

Проекция собственного магнитного момента на направление вектора В может принимать только одно из следующих двух значений:


где ħ= h / (2)(h - постоянная Планка), b -магнетон Бора, являющийся единицей магнитного момента электрона.


В общем случае магнитный момент электрона складывается из орбитального и спинового магнитных моментов. Магнитный момент атома, следовательно, складывается из магнитных моментов входящих в его состав электронов и магнитного момента ядра (обусловлен магнитными моментами входящих в ядро протонов и ней­тронов). Однако магнитные моменты ядер в тысячи раз меньше магнитных моментов электронов, поэтому ими пренебрегают. Таким образом, общий магнитный момент атома (молекулы) p a равен векторной сумме магнитных моментов (орбитальных и спиновых) входящих в атом (молекулу) электронов:

(131.6)

Еще раз обратим внимание на то, что при рассмотрении магнитных моментов электронов и атомов мы пользовались классической теорией, не учитывая ограничений, накладываемых на движение электронов законами квантовой механики. Однако это не противоречит полученным результатам, так как для дальнейшего объяснения намаг­ничивания веществ существенно лишь то, что атомы обладают магнитными момен­тами.

Что такое Энергия магнитного поля катушки с током?

Almagul"

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл. цепь, обладает запасом энергии.
В момент замыкания эл. цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Если в контуре с индуктивностью L течёт ток I, то в момент размыкания цепи возникает индукционный ток и им совершается работа. Эта работа совершается за счёт энергии исчезнувшего при размыкании цепи магнитного поля. На основании закона сохранения и превращения энергию магнитного поля превращается главным образом в энергию электрического поля, за счёт которой происходит нагревание проводников. Работа может быть определена из соотношения

Так как , то

Уменьшение энергии магнитного поля равно работе тока, поэтому

(16.18)

Формула справедлива для любого контура и показывает, что энергия магнитного поля зависит от индуктивности контура и силы тока, протекающего по нему.

Рассчитаем энергию однородного магнитного поля длинного соленоида, индуктивность которого определяется по формуле L = μμ 0 n 2 V. B этом случае формула энергии примет вид

Учитывая, что напряжённость поля внутри бесконечно длинного соленоида Н=In, получаем

(16.19)

Выразим энергию через индукцию магнитного поля B= μμ 0 H:

(16.20)

(16.21)

Вследствие того, что магнитное поле соленоида однородно и локализовано внутри соленоида, энергия распределена по объёму соленоида с постоянной плотностью

(16.22)

Учитывая последние три формулы, получаем



Учитывая правило Ленца, можно заметить, что явление самоиндукции аналогично проявлению инертности тел в механике. Так, вследствие инертности тело не мгновенно приобретает определённую скорость, а постепенно. Так же постепенно происходит и его торможение. То же самое, как мы видели, происходит и с силой тока при самоиндукции. Эту аналогию можно провести и дальше.

и

эти уравнения эквивалентны.

т.е. m ~L , υ~I

Эквивалентны и формулы


Примеры решения задач

Пример . В магнитном поле, изменяющемся по закону B=B 0 cosωt (B 0 =5мТл,

ω=5с -1), помещён круговой проволочный виток радиусом r=30см, причём нормаль к витку образует с направлением поля угол α=30º. Определите ЭДС индукции, возникающую в витке в момент времени t=10с.

Дано : B=B 0 cosωt; B 0 =5мТл=5∙10 -3 Тл; ω=5с -1 ; r=30см=0,3 м; α=30º; t=10 с.

Найти: ε i .

Решение: Согласно закону Фарадея,

, (1)

Где магнитный поток, сцепленный с витком при произвольном его расположении относительно магнитного поля.

По условию задачи B=B 0 cosωt, а площадь кольца S=πr 2 , поэтому

Ф=πr 2 B 0 cosωt∙cosα. (2)

Подставив выражение (2) в формулу (1) и продифференцировав, получаем искомую ЭДС индукции в заданный момент времени:

Ответ: ε i =4,69 мВ.

Пример В соленоиде длиной ℓ=50см и диаметром d=6см сила тока равномерно увеличивается на 0,3А за одну секунду. Определите число витков соленоида, если сила индукционного тока в кольце радиусом 3,1 см из медной проволоки (ρ=17нОм∙м), надетом на катушку, I к =0,3 А.

Дано: ℓ=50см=0,5 м; d=6см=0,06м;
;r к =3,1см=3.1∙10 -2 м; ρ=17нОм∙м=17∙10 -9 Ом∙м; I к =0,3 А.

Найти : N.

Решение . При изменении силы тока в соленоиде возникает ЭДС самоиндукции

(1)

где
- индуктивность соленоида. Подставив это выражение в (1)

с учётом

.

ЭДС индукции, возникающая в одном кольце, в N раз меньше, чем найденное значение ЭДС самоиндукции в соленоиде, состоящем из N витков, т.е.

. (2)

Согласно закону Ома, сила индукционного тока в кольце

, (3)

где
- сопротивление кольца. Поскольку ℓ к =πd, а S к =πr к 2 , выражение (3) примет вид

Подставив в эту формулу выражение (2), найдём искомое число витков соленоид

.

Ответ : N=150

Пример В однородном магнитном поле подвижная сторона (её длина ℓ=20см) прямоугольной рамки (см. рисунок) перемещается перпендикулярно линиям магнитной индукции со скоростью υ=5 м/с. Определите индукцию В магнитного поля, если возникающая в рамке ЭДС индукции ε i =0,2 В.

Дано: ℓ=20см=0,2 м; υ=5 м/с; ε i =0,2 В.

Найти : B.

Р
ешение
. При движении в магнитном поле подвижной стороны рамки поток Ф вектора магнитной индукции сквозь рамку возрастает, что, согласно закону Фарадея,

, (1)

приводит к возникновению ЭДС индукции.

Поток вектора магнитной индукции, сцепленный с рамкой,

Подставив выражение (2) в формулу (1) и учитывая, что B и ℓ - величины постоянные, получаем

откуда искомая индукция магнитного поля

Ответ : В=0,2 Тл.

Пример В однородном магнитном поле с индукцией В=0,2 Тл равномерно вращается катушка, содержащая N=600 витков, с частотой n=6 с -1 . Площадь S поперечного сечения катушка 100см 2 . Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Определите максимальную ЭДС индукции вращающейся катушки.

Дано: В=0,2 Тл; N=600; n=6 с -1 ; S=100см 2 =10 -2 м 2 .

Найти : (ε i) max .

Решение . Согласно закону Фарадея,

где Ф – полный магнитный поток, сцеплённый со всеми витками катушки. При произвольном расположении катушки относительно магнитного поля

Ф=NBScosωt, (1)

где круговая частота ω=2πn. Подставив ω в (1), получим

ε i =-NBS2πn(-sin2πnt)=2πnNBSsin2πnt,

ε i =(ε i) max при sin2πnt=1, поэтому

(ε i) max =2πnNBS

Ответ : (ε i) max =45,2 В.

Пример Однослойная длинная катушка содержит N=300 витков, плотно прилегающих друг к другу. Определите индуктивность катушки, если диаметр проволоки d=0,7 мм (изоляция ничтожной толщины) и она намотана на картонный цилиндр радиусом r=1 см. .

Дано: N=300; d=0,7 мм=7∙10 -4 м; r=1 см=10 -2 м.

Найти : L.

Решение . Индуктивность катушки

(1)

где Ф – полный магнитный поток, сцепленный со всеми витками катушки; I - сила тока в катушке.

Учитывая, что полный магнитный поток

(N-число витков катушки; В – магнитная индукция; S – площадь поперечного сечения катушки); магнитная индукция в катушке без сердечника

(μ 0 – магнитная постоянная; ℓ- длина катушки), длина катушки

(d-диаметр проволоки; витки вплотную прилегают друг к другу), площадь поперечного сечения катушки

Получим осле подстановки записанных выражений в формулу (1) искомую индуктивность катушки:

Ответ: L=1,69 мГн.

Пример Первичная обмотка понижающего трансформатора с коэффициентом трансформации k=0,1 включена в сеть с источником переменного напряжения с ЭДС ε 1 =220 В. Пренебрегая потерями энергии в первичной обмотке, определите напряжение U 2 на зажимах вторичной обмотки, если её сопротивление R 2 =5 Ом и сила тока в ней I 2 =2А.

Дано: k=0,1; ε 1 =220 В; R 2 =5 Ом; I 2 =2А.

Найти : U 2 .

Решение . В первичной обмотке под действием переменной ЭДС ε 1 возникает переменный ток I 1 , создающий в сердечнике трансформатора переменногый магнитный поток Ф, который пронизывает вторичную обмотку. Согласно закону Ома, для первичной обмотки

где R 1 – сопротивление первичной обмотки. Падение напряжения I 1 R 1 при быстропеременных полях мало по сравнению с ε 1 и ε 2 . Тогда можем записать:

(1)

ЭДС взаимной индукции, возникающая во вторичной обмотке,

(2)

Из выражений (1) и (2) получаем

,

где
- коэффициент трансформации, а знак «-» показывает, что ЭДС в первичной и вторичной обмотках противоположны по фазе. Следовательно, ЭДС во вторичной обмотке

Напряжение на зажимах вторичной обмотки

U 2 = ε 2 -I 2 R 2 = kε 1 -I 2 R 2 .

Ответ : U 2 =12 В.

Пример Соленоид без сердечника с однослойной обмоткой из проволоки диаметром d=0,4 мм имеет длину ℓ=0.5 м и поперечное сечение S=60см 2 . За какое время при напряжении U=10 В и силе тока I=1,5 А в обмотке выделится количество теплоты, равное энергии поля внутри соленоида? Поле считать однородным.

Дано: d=0,4 мм=0,4∙10 -4 м; ℓ=0,5 м; S=60см 2 =6∙10 -3 м 2 ; I=1,5А; U=10В; Q=W.

Найти : t.

Решение . При прохождении тока I при напряжении U в обмотке за время t выделяется теплота

Энергия поля внутри соленоида

(2)

где
(N – общее число витков соленоида). Если витки вплотную прилегают друг к другу, то ℓ=Nd, откуда
. Подставив выражение для В иN в (2), получаем

. (3)

Согласно условию задачи, Q=W. Приравняв выражение (1) и (3),найдём искомое время:

Ответ: t =1,77 мс.

Пример Катушка без сердечника длиной ℓ=50 см содержит N=200 витков. По катушке течёт ток I=1А. Определите объёмную плотность энергии магнитного поля внутри катушки..

Дано : ℓ=50 см=0,5 м; N=200; I=1 А.

Найти : ω.

Решение . Объёмная плотность энергии магнитного поля (энергия единицы объёма)

, (1)

где
- энергия магнитного поля (L - индуктивность катушки); V=Sℓ- объём катушки (S - площадь катушки; ℓ- длина катушки).

Магнитная индукция поля внутри соленоида с сердечником с магнитной проницаемостью μ равна

.

Полный магнитный поток, сцепленный со всеми витками соленоида,

.

Учитывая, что Ф=LI, получаем формулу для индуктивности соленоида:

(2)

Подставив выражение (2) в формулу (1) с учётом того, что
, найдём искомую объёмную плотность энергии магнитного поля внутри катушки:

Магнитное поле обладает энергией. Проще всего в этом убедиться, рассматривая процесс спадания тока в катушке при отсоединении ее от источника тока в схеме на рис. 123а.

Опыт по обнаружению энергии магнитного поля. До размыкания ключа в катушке идет некоторый ток и этот ток создает магнитное поле. При размыкании ключа остается последовательная цепь из катушки и резистора (рис. 1236). Ток в катушке благодаря самоиндукции спадает постепенно, и при этом на сопротивлении продолжает выделяться джоулева теплота.

За счет каких запасов энергии выделяется теплота - ведь источник питания уже отключен? Здесь убывает ток и создаваемое им магнитное поле; значит, мы можем говорить об энергии тока или об энергии создаваемого им магнитного поля.

Рис. 123. Электрическая цепь для изучения магнитной энергии тока

По аналогии с электростатикой, где можно говорить об энергии зарядов или об энергии создаваемого ими поля, естественно ожидать, что в случае постоянного тока допустимы оба представления: энергию можно рассматривать либо как энергию тока, либо как энергию создаваемого им магнитного поля. Но мы уже видели, что, хотя не бывает электрического заряда без создаваемого им поля, электрическое поле без заряда - вихревое поле - может существовать и оно обладает энергией. Поэтому вопрос о локализации электрической энергии решается в пользу поля. Как мы увидим немного позже, точно так же обстоит дело и с магнитной энергией.

Расчет энергии магнитного поля. Подсчитаем энергию магнитного поля. Из закона сохранения энергии очевидно, что в рассматриваемом нами опыте (рис. 123б) вся энергия магнитного поля в конце концов выделится в виде джоулевой теплоты на сопротивлении За время на сопротивлении выделяется количество теплоты По закону Ома ток равен

С учетом этого равенства выражение для можно записать в виде

Выделяющаяся теплота разумеется, положительна, так как ток убывает и, следовательно, Изобразив на графике зависимость магнитного потока от тока (рис. 124), легко сообразить, что полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью заштрихованного треугольника Таким образом, выражение для энергии магнитного поля создаваемого током в катушке с индуктивностью имеет вид

Рис. 124. К вычислению энергии магнитного поля

Объемная плотность энергии магнитного поля. Как и в электростатике, можно ввести понятие объемной плотности энергии магнитного поля. Рассматривая однородное магнитное поле внутри длинного соленоида, подставим во вторую из формул (3) выражение (10) § 17 для индуктивности длинного соленоида, а ток выразим через индукцию магнитного поля с помощью формулы (8) § 17. В результате получим

откуда объемная плотность энергии магнитного поля равна

Вернемся к опыту, схема которого показана на рис. 123, и повторим его, вдвинув предварительно в катушку железный сердечник. Установившееся значение силы тока в катушке будет таким же, так как сердечник не сказывается на полном сопротивлении цепи постоянного тока. Но при размыкании ключа мы обнаружим, что теперь в резисторе выделится гораздо большее количество теплоты, чем в отсутствие сердечника. Это означает, что в катушке с сердечником запас энергии магнитного поля при том же токе в ней стал гораздо больше. Глядя на формулу (3), выражающую энергию магнитного поля через силу тока I, убеждаемся, что благодаря железному сердечнику возрастает индуктивность катушки и создаваемый ею магнитный поток Ф.

Магнитная проницаемость вещества. Опыт показывает, что индуктивность всякого контура зависит от свойств среды, в которой он находится. Будем считать, что окружающая среда однородна и

заполняет все пространство, где имеется магнитное поле. Для длинной катушки это практически означает, что сердечник заполняет все пространство внутри ее обмотки. Тем более это справедливо и для замкнутой тороидальной катушки.

Обозначим через индуктивность катушки в вакууме, а через - ее индуктивность с сердечником. Безразмерное отношение

называют относительной магнитной проницаемостью (или просто магнитной проницаемостью) вещества, из которого сделан сердечник.

Магнитная проницаемость зависит от рода (химического состава) вещества и от его состояния, например от температуры. Она показывает, во сколько раз увеличивается или уменьшается магнитная индукция в веществе по сравнению с ее значением в вакууме при тех же значениях токов, создающих магнитное поле.

Вещества с (железо, кобальт, никель, некоторые сплавы) называются ферромагнетиками. Магнитное поле в них усиливается во много раз. Для каждого ферромагнетика существует характерная температура, точка Кюри, выше которой он превращается в парамагнетик. Парамагнетиками называют вещества с (алюминий, платина, кислород). Вещества с в которых магнитное поле ослабляется, называются диамагнетиками (медь, серебро, висмут). В неоднородном магнитном поле парамагнетик втягивается в область сильного поля, а диамагнетик - выталкивается из нее. В сверхпроводники магнитное поле вообще не проникает (эффект Мейсснера).

О природе магнитных свойств вещества. Магнитные свойства вещества обусловлены тем, что при помещении его во внешнее магнитное поле происходит намагничивание - каждый малый его элемент приобретает магнитный момент, т. е. становится магнитным диполем, подобным маленькому замкнутому контуру с током.

Диамагнетизм вещества представляет собой индукционный эффект, обусловленный индуцированными магнитным полем орбитальными токами в атомах или молекулах. Диамагнетизм - общее свойство всех веществ, но наиболее он проявляется в тех веществах, где атомы или молекулы не обладают собственным магнитным моментом. Парамагнетизм и ферромагнетизм, как правило, связаны с наличием у электронов собственных, не связанных с их орбитальным движением магнитных моментов. В кристаллах ферромагнитных веществ оказывается энергетически выгодной параллельная ориентация магнитных моментов электронов, и образуются макроскопические намагниченные области протяженностью - так называемые домены. В разных доменах магнитное поле ориентировано по-разному, но при наложении внешнего магнитного поля происходит

упорядочение полей отдельных доменов. У некоторых ферромагнитных веществ упорядоченная ориентация магнитных моментов доменов сохраняется и после выключения внешнего магнитного поля - получаются постоянные магниты.

Отмеченными тремя типами магнетиков не исчерпывается все многообразие магнитных свойств вещества. Среди магнитоупорядоченных веществ, кроме ферромагнетиков, различают еще, например, антиферромагнетики, ферримагнетики, для которых характерны более сложные закономерности магнитной структуры.

Микроскопическая теория, правильно объясняющая строение и магнитные свойства вещества, может быть развита только на основе квантовых представлений.

Магнитоупорядоченные вещества находят все более и более широкое применение в науке и технике, начиная от всем известных радио- и электротехнических устройств до современной микроэлектроники и вычислительной техники.

Покажите из энергетических соображений, что при замыкании цепи ток в катушке индуктивности нарастает постепенно. От чего зависит скорость его нарастания?

Какой вывод о зависимости магнитной энергии от индуктивности катушки можно сделать из формулы (3): эта энергия пропорциональна или обратно пропорциональна индуктивности?

Объясните, почему наличие железного сердечника не приводит к изменению установившегося значения силы тока в катушке в опыте, схема которого показана на рис. 123.

Приведите аргументы, подтверждающие квадратичную зависимость объемной плотности магнитной энергии от индукции поля.

Дайте качественное объяснение различию в характере поведения диамагнетиков и парамагнетиков в неоднородном магнитном поле.

При размыкании цепи в опыте (см. рис. 150, в) лампочка ярко вспыхивала. Откуда же бралась энергия, за счет которой в данном случае горела лампочка? Так как это происходило, когда цепь была отключена от источника тока, т. е. при уменьшении индукции магнитного поля катушки, то, следовательно, энергия, потребляемая лампочкой, была раньше запасена в виде энергии магнитного поля. При размыкании цепи оно начинает исчезать и запасенная в нем энергия в процессе самоиндукции превращается в энергию электрического тока, за счет которой горит лампочка. Из рассмотренного делаем вывод: магнитное поле обладает энергией.

Запас энергии магнитного поля катушки равен энергии, израсходованной источником тока на преодоление э. д. с. самоиндукции за весь тот промежуток времени, пока сила тока при замыкании цепи возрастала от нуля до некоторого значения I (см. рис. 150, б). Часть работы э. д. с. источника в катушке идет на нагревание ее проводов, а часть, равная э. д. с. самоиндукции Е ист = Е с , совершает работу против э. д. с. самоиндукции.

Работа тока, идущая на преодоление э. д. с. самоиндукции, равна энергии магнитного поля катушки:

А = W М = ΔЕ ист I ср Δt; W M = E c I cp Δt. (3)

Ток изменялся от 0 до I, следовательно, Поэтому Ток изменялся от 0 до I, тогда изменение тока ΔI = I. Значит,

Подставим Е с и I ср в формулу (3):


Получим формулу энергии магнитного поля катушки


Зависимость энергии магнитного поля катушки от ее индуктивности и силы тока в ней можно видеть на таком опыте. Увеличив реостатом силу тока в катушке, разомкнем цепь. В этом случае лампочка вспыхнула ярче, чем при малом токе в катушке. Значит, энергия магнитного поля катушки тем больше, чем больше сила тока в ней. Удалим из катушки половину сердечника, уменьшив тем самым ее индуктивность. Установим прежнюю силу тока в цепи и затем разомкнем ее. В этом случае лампочка вспыхивает менее ярко. Следовательно, энергия магнитного поля катушки тем больше, чем больше ее индуктивность. Энергия магнитного поля нами используется, например, в подъемном электромагнитном кране для притяжения кусков железа к сердечнику электромагнита крана, для получения тока во вторичной обмотке трансформатора.

Задача 36. В катушке без сердечника за 0,01 сек ток увеличился от 1 до 2 а, при этом в катушке возникла э. д. с. самоиндукции 20 в. Определить индуктивность катушки и изменение энергии ее магнитного поля.

Энергия катушки индуктивности (W) - это энергия магнитного поля, порождаемого электрическим током I, текущим по проводу данной катушки. Главная характеристика катушки - ее индуктивность L, то есть способность создавать магнитное поле при похождении по ее проводу электрического тока. У каждой катушки индуктивность и форма свои, поэтому и магнитное поле для каждой катушки будет отличаться величиной и направлением, хотя ток может быть абсолютно одинаковым.

В зависимости от геометрии конкретной катушки, от магнитных свойств среды внутри и около нее, - создаваемое пропускаемым током магнитное поле в каждой рассматриваемой точке будет обладать определенной индукцией B, как и величина магнитного потока Ф - тоже будет определенной на каждой из рассматриваемых площадок S.

Если попытаться объяснить совсем просто, то индукция показывает интенсивность магнитного действия (связанного ), которое способно оказать данное магнитное поле на проводник с током, в это поле помещенный, а магнитный поток обозначает то, как распределена магнитная индукция по рассматриваемой поверхности. Таким образом, энергия магнитного поля катушки с током локализована не непосредственно в витках катушки, а в том объеме пространства, в котором существует магнитное поле, c током катушки связанное.


То, что магнитное поле катушки с током обладает реальной энергией, можно обнаружить экспериментально. Соберем схему, в которой параллельно катушке с железным сердечником подключим лампу накаливания. Подадим на катушку с лампочкой постоянное напряжение от источника питания. В цепи нагрузки тут же установится ток, он потечет через лампочку и через катушку. Ток через лампочку будет обратно пропорционален сопротивлению ее нити накала, а ток через катушку - обратно пропорционален сопротивлению провода, которым она намотана.

Ежели сейчас резко разомкнуть тумблер между источником питания и цепью нагрузки, то лампочка кратковременно но довольно заметно вспыхнет. Это значит, что когда мы отключили источник питания, ток из катушки устремился в лампу, а значит данный ток в катушке был, он имел вокруг себя магнитное поле, и в момент исчезновения магнитного поля в катушке возникла ЭДС.

Данная индуцированная ЭДС называется ЭДС самоиндукции, поскольку навелась она собственным магнитным полем катушки с током на саму эту катушку. Тепловое действие Q тока в данном случае можно выразить через произведение величин тока, который был установлен в катушке на момент размыкания тумблера, сопротивления R цепи (провода катушки и лампы) и продолжительности времени исчезновения тока t. Напряжение, которое возникло на сопротивлении цепи, можно выразить через индуктивность L, полное сопротивление цепи R, а также с учетом времени исчезновения тока dt.


Применим теперь выражение для энергии катушки W к частному случаю - к соленоиду с сердечником, обладающим определенной магнитной проницаемостью, отличной от магнитной проницаемости вакуума.

Для начала выразим магнитный поток Ф через площадь сечения S соленоида, количество витков N и магнитную индукцию B по всей его длине l. Распишем сначала индукцию B через ток витка I, число витков на единицу длины n, и магнитную проницаемость вакуума.

Подставим затем сюда объем соленоида V. Мы нашли формулу для магнитной энергии W, и имеем право взять отсюда величину w – объемную плотность магнитной энергии внутри соленоида.

Джеймс Клерк Максвелл в свое время показал, что выражение объемной плотности магнитной энергии справедливо , но и для магнитных полей вообще.