Прохождение света звезд через солнечную корону. Комета выжила после «встречи» с Солнцем. Может ли Солнце погаснуть

3 532

С древних тысячелетий люди считали, что Земля, как и другие планеты, является живым организмом с костной структурой и другими органами жизнедеятельности. При этом температура внутри планет и звёзд находится в пределах 300-350°C.
Астроном Вильям Гершель в 1795 году писал о том, что звёзды – это большие планеты, но с ярким свечением.

Согласно преданиям Востока около 40 тысяч лет назад планета Солнце стало звездой вместо Юпитера, который, утратив яркость свечения, стал планетой.

Сейчас известно, что Солнце имеет форму шара с твёрдой поверхностью, многослойной атмосферой (аурой), радиационным и геомагнитным поясами. Яркое свечение вокруг Солнца образуется в верхних слоях его атмосферы – короне. Поверхность самого Солнца защищена от температуры короны многослойностью его атмосферы, толщина которой равна более 40 тыс. километров.

Нашими исследованиями последних лет удалось приблизиться к разгадке процесса образования высокотемпературного свечения в короне Солнца, чего нет у других планет, в том числе и у Юпитера (считавшегося ранее звездой). Одну из первых попыток объяснить повышенную энергетику Солнца сделал в 1842 году астроном Майер, который предположил, что звезда пополняется падающими на него необычными метеоритами. Подтверждением этому может являться падение на Солнце в феврале 1994 г. гигантской глыбы материального тела, которое внедрилось в поверхность звезды без какого-либо выброса грунта. Из газет известно, что в конце июля того же года на Юпитер упало громадное тело, тоже без выброса грунта. Через несколько месяцев в газетах появилось сообщение о появлении у поверхности Сатурна огромного тела, которое перед падением разделилось на несколько частей и поочередно внедрялось в поверхность Сатурна в течение 4-х дней; как бы выбирая место падения.

По легендам Востока известно, что корабли Больших Строителей Космической Цивилизации бороздят Космос, доставляя (транспортируя) различные материалы для создания и функционирования необходимых объектов на звёздах и планетах.

Упавшее на Солнце в 1994 году материальное тело было внедрено в поверхность коры у западной гряды известных белых и чёрных пятен.

Установлено давно, что белые пятна обладают положительным, а чёрные пятна — отрицательным магнитным полем.

Эта гряда заглублена в поверхность звезды и простирается с запада на восток более чем на 40 тысяч км. Она является южным энергоисточником, участвующим в образовании яркого коронного свечения звезды. Другой заглублённый энергоисточник находится в северной части Солнца на месте видимых спланированных геометрических форм неприродного происхождения. Между южным и северным энергоисточниками имеются тоннельные коммуникации. В районе экватора от этих тоннелей вверх (в атмосферу) уходит мощный поток энергии, возбуждающий свечение в слоях короны (см. рис.).

Можно предположить, что подобный энергопоток с энергоцентрами был также и на Юпитере. Не исключено, что подобные сооружения имеются также и на других звёздах Вселенной.

Яркое коронное свечение вокруг Солнца происходит на высоте внутреннего радиационного пояса, разделённого дискообразным энергослоем (ДЭС) на северную и южную части. Именно по этому ДЭС идут основные жизненные энергопотоки между Солнцем и Космосом в обоих направлениях.

Оказывается, что ранее древние цивилизации могли создавать яркое внешнее свечение в малых и больших шаровых светильниках. Такие светильники имелись до новой эры в храмах Египта, Римской империи, Ближнего Востока.

Исследователь полковник П.Х. Фосетт в начале XX века писал, что в Бразилии, в недоступных лесах бассейна р. Амазонка находились шаровые светильники, освещавшие весь город. Эти светильники обладали внешним ореолом свечения, в то время как сами слоистые шары могли быть непрозрачными. Ранее на Земле подобные светильники имели разные конструктивные решения больших и малых размеров.

Любопытно, что подобная «вечная лампа» была продемонстрирована в 1845 году в зале в Вольного экономического общества Петербурга изобретателем Ф.И. Борщевским. В заявке своего изобретения автор сообщал, что в стеклянном шаре находятся два острых кусочка плавикового шпата (флюорита) из гранитных гор Сибири. Эти кусочки плавикового шпата ярко светятся от гальванической батареи, не плавятся и работают вечно, потребляя небольшой ток. Об этом сообщается в книге Д.Тихого «Эстафета великого открытия» (Советская Россия, М., 1971). В устройствах экваториальной части энергоканала на Солнце наверняка тоже имеются материалы флюорита.

Главная интрига солнечного затмения, которое 21 августа впервые за 99 лет будет наблюдаться на всей территории Северной Америки, - солнечная корона. По ее форме можно будет узнать, насколько высока магнитная активность звезды. В России затмение будет частичным. Его можно будет увидеть на Чукотском полуострове, там тень Луны закроет почти половину солнечного диска на рассвете 22 августа. Астрономы говорят, что в последние годы солнечная активность идет на спад, а минимума она, предположительно, достигнет в 2019 году. А солнечная корона 21 августа поможет ученым уточнить этот прогноз.

Эксперты отмечают, что физического влияния на человека затмение Солнца не оказывает. Однако все, кто наблюдает за этим явлением, испытывают незабываемые ощущения. Сакральный страх, который питали герои древних летописей к затмению, в какой-то степени сохранился и до наших дней. При этом, по мнению психофизиологов, особо впечатлительные люди могут реально почувствовать себя нехорошо.

Астроном, сотрудник Московского планетария Людмила Кошман рассказала «Известиям», что лунное и солнечное затмения происходят раз в полгода, а период между ними - две недели. Во время этих небесных спектаклей Солнце, Земля и Луна выстраиваются в одну линию. И если посередине оказывается Луна, то люди наблюдают солнечное затмение, а если Земля - то лунное.

Затмение Солнца, которое произойдет 21 августа 2017 года, назвали великим американским, поскольку полную фазу можно будет наблюдать только с территории Соединенных Штатов Америки. Начнется полное затмение в 19.47 по московскому времени на восходе Солнца в Тихом океане к северу от Гавайских островов, а закончится в 23.00 (мск) в Атлантическом океане. За это время полоса видимости затмения пересечет и всю Северную Америку с запада на восток. Ширина тени от Луны составит примерно 115 км. Люди, находящиеся в этот момент внутри тени, увидят уникальное астрономическое явление. Полное затмение Солнца будет видно в 14 штатах, а частичное - в 48 штатах США.

- Длительность максимальной фазы затмения составит 2 минуты 40 секунд. Это произойдет на границе штатов Кентукки и Теннесси недалеко от городка Хопкинсвилл в 21.24 по московскому времени, - рассказала Людмила Кошман.

Частные фазы этого астрономического явления можно будет наблюдать и в России на Чукотском полуострове. Наибольшая фаза, доступная наблюдениям с территории России, составит 0,45 и будет видна на рассвете 22 августа на мысе Олюторский (Камчатская область). Там из-за горизонта появится Солнце, почти наполовину закрытое Луной.

Жители остальной части нашей страны ничего необычного на небе не заметят, потому что во время затмения Солнце будет за горизонтом. Однако увидеть небесный спектакль можно будет благодаря онлайн-трансляции американского космического агентства NASA.

В момент полной фазы затмения происходит уникальное явление - невооруженным глазом можно увидеть корону Солнца. Она вспыхнет ярким лучистым ореолом, когда диск Луны полностью закроет диск Солнца. Это самая внешняя и горячая часть атмосферы Солнца, представляющей собой поток плазмы, а проще говоря - солнечный ветер.

Корона Солнца для астрономов - уникальная естественная лаборатория, в которой можно наблюдать вещество в самых необычных и недостижимых на Земле условиях. В момент полной фазы затмения по форме короны можно определить, активное ли сейчас Солнце. Если корона вытянута по солнечному экватору - Солнце спокойное, а если корона имеет округлую форму, то Солнце активно.

Если Солнце находится в активной фазе, то на нем, как правило, наблюдается много темных пятен, высока его магнитная активность, - объяснила Людмила Кошман. - Магнитное поле Солнца - ключ ко всем активным явлениям, происходящим в солнечной атмосфере. Это вспышки и корональные выбросы солнечной энергии, которые, достигая поверхности Земли, возмущают ее магнитосферу. Всё это приводит к магнитным бурям разной силы, за которыми люди следят почти так же, как за прогнозом Гидрометцентра. За активностью Солнца и изменениями космической погоды постоянно наблюдают солнечные космические телескопы.

- За 11-летний цикл активности Солнца на Земле в среднем происходит от четырех до шести очень сильных магнитных бурь (одна буря за два-три года), - сказала Людмила Кошман.

Она отметила, что в последние годы солнечная активность идет на спад, предполагается, что минимума она достигнет в 2019 году. А созерцание солнечной короны 21 августа поможет уточнить этот прогноз.

Еще одна интрига ближайшего затмения - Регул. Это самая яркая звезда созвездия Льва. Она расположится почти за солнечной короной. Будет она видна или нет - неизвестно. А вот в отношении Юпитера, Венеры, Марса, Меркурия, Сириуса, Проциона, Бетельгейзе, Капеллы и Арктура астрономы не сомневаются, все эти звезды и планеты будут сиять 21 августа над США в момент полной фазы.

Заместитель директора Главной (Пулковской) астрономической обсерватории Александр Кривцов рассказал «Известиям», солнечные наблюдения ведутся учеными в непрерывном режиме с наземных обсерваторий и со спутников. По его мнению, солнечное затмение носит больше научно-познавательный и культурный интерес.

Я, как человек, который наблюдал полное затмение Солнца, могу сказать, что психофизиологическое воздействие очень большое. Все рассказы о том, что затихают животные и птицы, - это правда. Я, как астроном, знал, что просто Луна закрывает Солнце. Однако, когда видишь это собственными глазами, испытываешь страх, - вспомнил Александр Кривцов.

По его наблюдениям, солнечное затмение точнее изображено на одной из гравюр «Слова о полку Игореве» - черный круг, окруженный будто щупальцами.

Когда ты смотришь на солнечную корону, возникает ощущение, что она живая, с переливающимися гигантскими структурами. Психофизиологическое воздействие очень большое, - сказал Александр Кривцов.

Доктор медицинских наук, профессор, главный научный сотрудник НИИ нормальной физиологии им. П.К. Анохина Евгений Юматов рассказал, что поскольку солнечное затмение - довольно редкое явление и совпадало со знаменательными событиями, люди начали его воспринимать как предзнаменование. При этом его влияние на человека обусловлено только психикой. Степень влияния солнечного затмения на здоровье зависит от того, насколько человек подвержен внушению, и от его психического состояния.

- В данном случае мы говорим о влиянии психического состояния на соматические процессы, связанные с реальной жизнедеятельностью, то есть о психосоматике. Я сам еще в студенчестве был свидетелем интересного случая. В клинику доставили человека, находящегося в невротическом состоянии. Ему приснился сон, что его переехал трамвай, а утром дермография показала, что поперек тела - отпечаток рельса, - рассказал Евгений Юматов.

Историк, культуролог, профессор Института журналистики и литературного творчества Константин Ковалев-Случевский рассказал «Известиям», что почти во всех русских летописаниях содержатся многочисленные описания явлений природы, среди которых очень часто встречается солнечное затмение. В древние времена люди не могли объяснить это явление. Оно вызывало у них большую тревогу и трактовалось как плохое предзнаменование. Так, например, затмение солнца 3 августа 1236 года описывается в одной из летописей как предвестие «пленения земли христианской» монголо-татарским войском под предводительством Батыя.

Есть несколько совпадений солнечных затмений со значимыми событиями. Однако они не являются систематическими и закономерными, - отметил Константин Ковалев-Случевский.

Но несмотря на то что давно известно, почему происходит затмение Солнца и что оно безопасно для людей, страх перед ним всё равно остался до сих пор. По мнению профессора, такое отношение к астрономическим явлениям присуще в большей степени христианам.

- Христианское мировоззрение апокалиптично. Если человек не верит в конец света, то он не верит в Священное Писание. Пасхальный календарь был основан на астрономических расчетах. Европейская цивилизация уделяла большое внимание движению планет. И мы как наследники Византии переняли этот страх перед затмением Солнца, напоминающим о конце света, и донесли его до наших дней, - объяснил Константин Ковалев-Случевский.

Людмила Кошман рассказала, что в следующем, 2018 году россияне смогут увидеть два полных затмения Луны: 31 января и 27 июля. Оба затмения будут благоприятны для наблюдения почти на всей территории России.

Также в 2018 году произойдут три затмения Солнца: 15 февраля, 13 июля и 11 августа, но все они будут частными. На территории России можно будет наблюдать только одно частное затмение Солнца - 11 августа 2018 года. Граница видимости затмения пройдет через центральные области нашей страны, однако фаза будет так невелика, что мы почти ничего не заметим.

Солнце является единственной звездой в Солнечной системе, вокруг нее совершают свое движение все планеты системы, а также их спутники и другие объекты, вплоть до космической пыли. Если сравнить массу Солнца с массой всей Солнечной системы, то она составит порядка 99,866 процентов.

Солнце является одной из 100 000 000 000 звезд нашей Галактики и по величине стоит среди них на четвертом месте. Ближайшая к Солнцу звезда Проксима Центавра располагается на расстоянии четырех световых лет от Земли. От Солнца до планеты Земля 149,6 млн км, свет от звезды доходит за восемь минут. От центра Млечного пути звезда находится на расстоянии 26 тысяч световых лет, при этом она производит вращение вокруг него со скоростью 1 оборот в 200 миллионов лет.

Презентация: Солнце

По спектральной классификации звезда относится к типу «желтый карлик», по приблизительным расчетам ее возраст составляет чуть более 4,5 миллиардов лет, она находится в середине своего жизненного цикла.

Солнце, состоящее на 92% из водорода и на 7% из гелия, имеет очень сложное строение. В его центре находится ядро с радиусом примерно 150 000-175 000 км, что составляет до 25% от общего радиуса звезды, в его центре температура приближается к 14 000 000 К.

Ядро с большой скоростью производит вращение вокруг оси, причем эта скорость существенно превышает показатели внешних оболочек звезды. Здесь происходит реакция образования гелия из четырех протонов, вследствие чего получается большой объем энергии, проходящий через все слои и излучающийся с фотосферы в виде кинетической энергии и света. Над ядром находится зона лучистого переноса, где температуры находятся в диапазоне 2-7 миллионов К. Затем следует конвективная зона толщиной примерно 200 000 км, где наблюдается уже не переизлучение для переноса энергии, а перемешивание плазмы. На поверхности слоя температура составляет примерно 5800 К.

Атмосфера Солнца состоит из фотосферы, образующей видимую поверхность звезды, хромосферы толщиной порядка 2000 км и короны, последней внешней солнечной оболочки, температура которой находится в диапазоне 1 000 000-20 000 000 К. Из внешней части короны происходит выход ионизированных частиц, называемых солнечным ветром.

Когда Солнце достигнет возраста примерно в 7,5 - 8 миллиардов лет (то есть через 4-5 млрд лет) звезда превратится в «красного гиганта», ее внешние оболочки расширятся и достигнут орбиты Земли, возможно, отодвинув планету на более дальнее расстояние.

Под воздействием высоких температур жизнь в сегодняшнем понимании станет просто невозможна. Заключительный цикл своей жизни Солнце проведет в состоянии «белого карлика».

Солнце - источник жизни на Земле

Солнце самый главный источник тепла и энергии, благодаря которому при содействии других благоприятных факторов на Земле есть жизнь. Наша планета Земля вращается вокруг своей оси, поэтому каждые сутки, находясь на солнечной стороне планеты мы можем наблюдать рассвет и удивительное по красоте явление закат, а ночью, когда часть планеты попадает в теневую сторону, можно наблюдать за звездами на ночном небе.

Солнце оказывает огромное влияние на жизнедеятельность Земли, оно участвует в фотосинтезе, помогает в образовании витамина D в организме человека. Солнечный ветер вызывает геомагнитные бури и именно его проникновение в слои земной атмосферы вызывает такое красивейшее природное явление, как северное сияние, называемое еще полярным. Солнечная активность меняется в сторону уменьшения или усиления примерно раз в 11 лет.

С начала космической эры исследователей интересовало Солнце. Для профессионального наблюдения используются специальные телескопы с двумя зеркалами, разработаны международные программы, но самые точные данные можно получить вне слоев атмосферы Земли, поэтому чаще всего исследования проводятся со спутников, космических кораблей. Первые такие исследования были проведены еще в 1957 году в нескольких спектральных диапазонах.

Сегодня на орбиты выводятся спутники, представляющие собой обсерватории в миниатюре, позволяющие получить очень интересные материалы для изучения звезды. Еще в годы первого освоения космоса человеком были разработаны и запущены несколько космических аппаратов, направленных на изучение Солнца. Первыми из них была серия американских спутников, запуск которых стартовал в 1962 году. В 1976 году запущен западногерманский аппарат Гелиос-2, который впервые в истории приблизился к светилу на минимальное расстояние в 0,29 а.е. При этом были зафиксированы появление ядер легкого гелия при вспышках солнца, а также магнитные ударные волны, охватывающие диапазон 100 Гц-2,2 кГц.

Еще один интересный аппарат - солнечный зонд Ulysses, запущенный в 1990 году. Он выведен на околосолнечную орбиту и движется перпендикулярно полосе эклиптики. Через 8 лет после запуска аппарат завершил первый виток вокруг Солнца. Он зарегистрировал спиральную форму магнитного поля светила, а также постоянное его увеличение.

На 2018 год НАСА планирует запуск аппарата Solar Probe+, который приблизится к Солнцу на максимально приближенное расстояние - 6 млн. км (это в 7 раз меньше дистанции, достигнутой Гелиусом-2) и займет круговую орбиту. Для защиты от высочайшей температуры он оснащен щитом из углеродистого волокна.

Я не любитель гравитационных волн. Видимо, это ещё одно из предсказаний ОТО.

Первое предсказание ОТО об искривлении пространства гравитационным телом было обнаружено в 1919г по отклонению лучей света далёких эвёзд при прохождении света рядом с Солнцем.

Но такое отклонение лучей света объясняется обычным преломлением лучей света в прозрачной атмосфере Солнца. И не надо искривлять пространство. Земля тоже иногда "искривляет" пространство - миражи.

Гравитационные волны, видимо, из этой же серии открытий. Но какие перспективы открываются перед человечеством, даже телепортация.

Эйнштейн уже вводил в свою теорию антигравитационную поправку или лямда - член, но потом передумал и признал этот лямда - член одной из самых больших ошибок. А какие перспективы открылись бы с этой антигравитацией. Положил этот лямда - член в рюкзак и...

P. S. Геофизики уже давно обнаружили гравитационные волны. Выполняя наблюдения с гравиметрами, мы иногда обнаруживаем гравитационные волны. Гравиметр в одном и том же месте вдруг показывает то увеличение, то уменьшение гравитации. Это землетрясения возбуждают "гравитационные" волны. И не надо искать эти волны в далёкой Вселенной.

Рецензии

Михаил, мне стыдно за вас и за тех, кто вам тут поддакивает. У половины из них с грамматикой-то дело плохо, а уж с физикой, вероятно, и подавно.
А теперь - по делу. Визги ваших подельников о том, что-де при измерении гравитационных волн будут обнаружены вполне земные воздействия, а вовсе не гравитационный сигал, несостоятельны. Во-первых, сигнал ищется на вполне определенных частотах; во-вторых- вполне определенной формы; в-третьих - обнаружение проводится не одним интерферометром, а по крайней мере двумя, расположенными в сотнях километров друг от друга, и в расчет принимаются только сигналы, одновременно возникшие в обоих приборах. Впрочем, вы можете и сами погуглить технологию этого дела. Или же вам проще сидеть и бурчать, не пытаясь вникнуть?
А с какого перепуга вы вдруг заговорили о какой-то телепортации в связи с гравиволнами? Это кто вам пообещал телепортацию? Эйнштейн?
Едем дальше. Поговорим о светопреломлении в солнечной атмосфере.
Зависимость показателя преломления газов от температуры и давления может быть представлена в форме n=1+AP/T (уравнение 3 в http://www.studfiles.ru/preview/711013/) Здесь Р – давление, Т – температура, А – постоянная. Для водорода при температуре 300 К и давлении 1 атм. (т.е. 100 тысяч паскаль) показатель преломления составляет 1,000132. Это позволяет найти постоянную А:
AP/T =0.000132, A=0.000132*T/P=0.000132*293/100000 = 3,8*10^-6
В хромосфере солнца температура достигает 20000 градусов, а концентрация газа 10^-12 г/см куб. – т.е. 10^-6 г/м куб. Рассчитаем давление, используя уравнение Клапейрона-Менделеева для моля газа: PV=RT. Сначала рассчитаем объем, полагая что газ – водород с мольной массой 1 (т.к. при этой температуре газ полностью атомарный). Расчет простой: 10^-6 г занимают объем 1 м куб., а 1 г – 10^6 м куб. Отсюда находим давление: P=RT/V= 8,3*20000/10^6=0,166 Па. Совсем не густо!
Теперь можно вычислить показатель преломления солнечной хромосферы:
n=1+3,8*10^-6*0,166 /(2*10^4)=1+0,315*10^-10, т.е. слагаемое после единицы меньше, чем у водорода в нормальных условиях в (1,32^-4/0,315*10^-10)=4.2*10^6 раз. В четыре миллиона раз – и это в хромосфере!
Измерение же отклонения проводилось не в хромосфере, примыкающей к самой поверхности солнца, к его фотосфере, а в его короне – но там температура составляет уже миллионы градусов, а давление еще в сотни раз меньше, т.е. второе слагаемое уменьшится еще по меньшей мере на четыре порядка! Ни каким прибором не получится обнаружить преломление в короне Солнца!
Включайте голову хоть чуть-чуть.

"Расстояния между телами измеряются в угловых единицах? Это что-то новенькое. Ну-ка, поведайте, сколько угловых единиц между землей и луной, будет очень интересно. Вы заврались, господа. Продолжайте заниматься взаимным удовлетворением в том же духе. Вы - интеллектуальные онанисты, и плодовитость ваша такая же, как у онанистов."

Опять перевираешь! Я ж тебе говорил, что размеры небесных тел и расстояния между ними на небосводе измеряются в угловых единицах. Забей в поисковике "Угловой размер Солнца и Земли". Их размер примерно одинаков - 0,5 угловых градуса, что особенно хорошо заметно при полных солнечных затмениях..
Просто баран умнее в сто крат, чем баран учёный.

Создана новая технология наблюдения за экзопланетами

Оптическую технологию «исправления» света от далеких звёзд разработали физики из МФТИ и ИКИ РАН. Она позволит значительно улучшить «зрение» телескопов и напрямую наблюдать экзопланеты, сопоставимые по размерам с Землей. Работа была опубликована в Journal of Astronomical Telescopes, Instruments, and Systems. «МК» побеседовал о разработке с руководителем научной группы доцентом МФТИ и заведующим Лабораторией планетной астрономии ИКИ РАН Александром ТАВРОВЫМ.

Первые экзопланеты - планеты за пределами Солнечной системы - были обнаружены в конце XX века, а сейчас их известно более двух тысяч. Увидеть их собственный свет без специальных инструментов практически невозможно - его “затмевает” излучение звёзд. Поэтому экзопланеты до последнего времени находили только косвенными методами: фиксируя слабые периодические колебания светимости звезды при прохождении планеты перед её диском (транзитный метод), или же колебания самой звезды под действием притяжения планеты (метод лучевых скоростей). Только в конце 2000-х годов астрономы впервые смогли напрямую получить снимки экзопланет. Для таких съемок используются коронографы, впервые созданные в 1930-х годах для наблюдений солнечной короны вне затмений. Внутри у этих устройств есть “искусственная луна”, которая экранирует часть поля зрения, например, закрывает солнечный диск, позволяя видеть тусклую солнечную корону.

Для того, чтобы повторить метод с далекими объектами - звездами и экзопланетами, вращающимися вокруг своих светил за пределами Солнечной системы, требуется значительно более высокий уровень точности и значительно более высокое разрешение самого телескопа, на котором установлен коронограф.

Если мы наблюдаем за небесным объектом с Земли при помощи телескопа, то без специальной адаптивной оптики, вряд ли добьемся хорошего результата. Свет проходит через турбулентную атмосферу, что мешает в итоге увидеть объект в хорошем качестве, - поясняет Александр Тавров. - Для наблюдения экзопланет используются космические телескопы. Им земная атмосфера уже не мешает, но есть множество других факторов, которые также требуют наличия в телескопе адаптивной оптики (как правило, это какая-то специальная мембрана – управляемое изогнутое зеркало, позволяющее «выравнивать» свет от далеких объектов). У западных коллег такая точная, дорогая оптика существует, а у нас, увы, пока нет. Наше ноу-хау заключается в инновационном решении, позволяющем обойтись без суперточных адаптивных зеркал при наблюдении за экзопланетами. На пути света к коронографу мы поставили другое оптическое устройство - несбалансированный интерферометр. Если говорить по-простому, он исправляет изображение, полученное от звезды и вращающейся вокруг нее экзопланеты, после чего на коронографе мы можем хорошо отличить свечение отдельно взятой планеты от света звезды. Качество полученного таким способом изображения получается не хуже, чем у западных коллег, а в чем-то даже лучше.