Внутренние углы треугольника онлайн. Как рассчитать угол наклона крыши. Формула площади треугольника по трем сторонам и радиусу описанной окружности

Прямоугольный треугольник встречается в реальности практически на каждом углу. Знание о свойствах данной фигуры, а также умение вычислять ее площадь, несомненно пригодится вам не только для решения задач по геометрии, но и в жизненных ситуациях.

Геометрия треугольника

В элементарной геометрии прямоугольный треугольник - это фигура, которая состоит из трех соединенных отрезков, формирующих три угла (два острых и один прямой). Прямоугольный треугольник - оригинальная фигура, характеризующаяся рядом важных свойств, которые составляют фундамент тригонометрии. В отличие от обычного треугольника стороны прямоугольной фигуры имеют собственные названия:

  • Гипотенуза - самая длинная сторона треугольника, лежащая напротив прямого угла.
  • Катеты - отрезки, образующие прямой угол. В зависимости от рассматриваемого угла катет может быть прилежащим к нему (образующий этот угол с гипотенузой) или противолежащим (лежащим напротив угла). Для непрямоугольных треугольников катетов не существуют.

Именно соотношение катетов и гипотенузы составляет основу тригонометрии: синусы, тангенсы и секансы определяются как отношение сторон прямоугольного треугольника.

Прямоугольный треугольник в реальности

Данная фигура получила широкое распространение в реальности. Треугольники находят применение в проектировании и технике, поэтому расчет площади фигуры приходится выполнять инженерам, архитекторам и проектировщикам. Форму треугольника имеют основания тетраэдров или призм - трехмерных фигур, которые легко встретить в повседневности. Кроме того, угольник - наиболее простое представление «плоского» прямоугольного треугольника в реальности. Угольник - это слесарный, чертежный, строительный и столярный инструмент, который используется для построения углов как школьниками, так и инженерами.

Площадь треугольника

Площадь геометрической фигуры - это количественная оценка того, какая часть плоскости ограничена сторонами треугольника. Площадь обычного треугольника можно найти пятью способами, используя формулу Герона или оперируя при расчетах такими переменными, как основание, сторона, угол и радиус вписанной или описанной окружности. Самая простая формула площади выражается как:

где a – сторона треугольника, h – его высота.

Формула для вычисления площади прямоугольного треугольника еще проще:

где a и b – катеты.

Работая с нашим онлайн-калькулятор, вы можете вычислить площадь треугольника, используя три пары параметров:

  • два катета;
  • катет и прилежащий угол;
  • катет и противолежащий угол.

В задачах или бытовых ситуациях вам будут даны разные комбинации переменных, поэтому такая форма калькулятора позволяет вычислить площадь треугольника несколькими способами. Рассмотрим пару примеров.

Примеры из реальной жизни

Керамическая плитка

Допустим, вы хотите выполнить облицовку стен кухни керамической плиткой, которая имеет форму прямоугольного треугольника. Для того чтобы определить расход плитки вы должны узнать площадь одного элемента облицовки и общую площадь обрабатываемой поверхности. Пусть вам необходимо обработать 7 квадратных метров. Длина катетов одного элемента составляет по 19 см, тогда площадь плитки будет равна:

Это означает, что площадь одного элемента составляет 24,5 квадратных сантиметра или 0,01805 квадратных метра. Зная эти параметры, вы можете подсчитать, что для отделки 7 квадратных метров стены вам понадобится 7/0,01805 = 387 элементов облицовочной плитки.

Школьная задача

Пусть в школьной задаче по геометрии требуется найти площадь прямоугольного треугольника, зная только то, что сторона одного катета равна 5 см, а величина противолежащего угла составляет 30 градусов. Наш онлайн-калькулятор сопровождается иллюстрацией, на которой указаны стороны и углы прямоугольного треугольника. Если сторона a = 5 см, то ее противолежащий угол - это угол альфа, равный 30 градусов. Введите эти данные в форму калькулятора и получите результат:

Таким образом, калькулятор не только вычисляет площадь заданного треугольника, но и определяет длину прилежащего катета и гипотенузы, а также величину второго угла.

Заключение

Прямоугольные треугольники встречаются в нашей жизни буквально на каждом углу. Определение площади таких фигур пригодится вам не только при решении школьных заданий по геометрии, но и повседневной и профессиональной деятельности.

Калькулятор онлайн.
Решение треугольников.

Решением треугольника называется нахождение всех его шести элементов (т.е. трех сторон и трех углов) по каким-нибудь трем данным элементам, определяющим треугольник.

Эта математическая программа находит сторону \(c \), углы \(\alpha \) и \(\beta \) по заданным пользователем сторонам \(a, b \) и углу между ними \(\gamma \)

Программа не только даёт ответ задачи, но и отображает процесс нахождения решения.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Правила ввода чисел

Числа можно задать не только целые, но и дробные.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так 2.5 или так 2,5

Введите стороны \(a, b \) и угол между ними \(\gamma \) Решить треугольник

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудьте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Теорема синусов

Теорема

Стороны треугольника пропорциональны синусам противолежащих углов:
$$ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} $$

Теорема косинусов

Теорема
Пусть в треугольнике ABC AB = c, ВС = а, СА = b. Тогда
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон, умноженное на косинус угла между ними.
$$ a^2 = b^2+c^2-2ba \cos A $$

Решение треугольников

Решением треугольника называется нахождение всех его шести элементов (т.е. трёх сторон и трёх углов) по каким-нибудь трём данным элементам, определяющим треугольник.

Рассмотрим три задачи на решение треугольника. При этом будем пользоваться такими обозначениями для сторон треугольника ABC: AB = c, BC = a, CA = b.

Решение треугольника по двум сторонам и углу между ними

Дано: \(a, b, \angle C \). Найти \(c, \angle A, \angle B \)

Решение
1. По теореме косинусов находим \(c\):

$$ c = \sqrt{ a^2+b^2-2ab \cos C } $$ 2. Пользуясь теоремой косинусов, имеем:
$$ \cos A = \frac{ b^2+c^2-a^2 }{2bc} $$

3. \(\angle B = 180^\circ -\angle A -\angle C \)

Решение треугольника по стороне и прилежащим к ней углам

Дано: \(a, \angle B, \angle C \). Найти \(\angle A, b, c \)

Решение
1. \(\angle A = 180^\circ -\angle B -\angle C \)

2. С помощью теоремы синусов вычисляем b и c:
$$ b = a \frac{\sin B}{\sin A}, \quad c = a \frac{\sin C}{\sin A} $$

Решение треугольника по трём сторонам

Дано: \(a, b, c \). Найти \(\angle A, \angle B, \angle C \)

Решение
1. По теореме косинусов получаем:
$$ \cos A = \frac{b^2+c^2-a^2}{2bc} $$

По \(\cos A \) находим \(\angle A \) с помощью микрокалькулятора или по таблице.

2. Аналогично находим угол B.
3. \(\angle C = 180^\circ -\angle A -\angle B \)

Решение треугольника по двум сторонам и углу напротив известной стороны

Дано: \(a, b, \angle A \). Найти \(c, \angle B, \angle C \)

Решение
1. По теореме синусов находим \(\sin B \) получаем:
$$ \frac{a}{\sin A} = \frac{b}{\sin B} \Rightarrow \sin B = \frac{b}{a} \cdot \sin A $$

Введём обозначение: \(D = \frac{b}{a} \cdot \sin A \). В зависимости от числа D возможны случаи:
Если D > 1, такого треугольника не существует, т.к. \(\sin B \) больше 1 быть не может
Если D = 1, существует единственный \(\angle B: \quad \sin B = 1 \Rightarrow \angle B = 90^\circ \)
Если D Если D 2. \(\angle C = 180^\circ -\angle A -\angle B \)

3. С помощью теоремы синусов вычисляем сторону c:
$$ c = a \frac{\sin C}{\sin A} $$

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач

Определение треугольника

Треугольник - это геометрическая фигура, которая образуется в результате пересечения трех отрезков, концы которых не лежат на одной прямой. У любого треугольника есть три стороны, три вершины и три угла.

Онлайн-калькулятор

Треугольники бывают различных видов. Например, существует равносторонний треугольник (тот, у которого все стороны равны), равнобедренный (в нем равны две стороны) и прямоугольный (в котором один из углов прямой, т. е. равен 90 градусам).

Площадь треугольника можно найти различными способами в зависимости от того, какие элементы фигуры известны по условию задачи, будь то углы, длины, либо же вообще радиусы окружностей, связанных с треугольником. Рассмотрим каждый способ отдельно с примерами.

Формула площади треугольника по основанию и высоте

S = 1 2 ⋅ a ⋅ h S= \frac{1}{2}\cdot a\cdot h S = 2 1 ​ ⋅ a ⋅ h ,

A a a - основание треугольника;
h h h - высота треугольника, проведенная к данному основанию a.

Пример

Найти площадь треугольника, если известна длина его основания, равная 10 (см.) и высота, проведенная к этому основанию, равная 5 (см.).

Решение

A = 10 a=10 a = 1 0
h = 5 h=5 h = 5

Подставляем в формулу для площади и получаем:
S = 1 2 ⋅ 10 ⋅ 5 = 25 S=\frac{1}{2}\cdot10\cdot 5=25 S = 2 1 ​ ⋅ 1 0 ⋅ 5 = 2 5 (см. кв.)

Ответ: 25 (см. кв.)

Формула площади треугольника по длинам всех сторон

S = p ⋅ (p − a) ⋅ (p − b) ⋅ (p − c) S= \sqrt{p\cdot(p-a)\cdot (p-b)\cdot (p-c)} S = p ⋅ (p − a ) ⋅ (p − b ) ⋅ (p − c ) ​ ,

A , b , c a, b, c a , b , c - длины сторон треугольника;
p p p - половина суммы всех сторон треугольника (то есть, половина периметра треугольника):

P = 1 2 (a + b + c) p=\frac{1}{2}(a+b+c) p = 2 1 ​ (a + b + c )

Эта формула называется формулой Герона .

Пример

Найти площадь треугольника, если известны длины трех его сторон, равные 3 (см.), 4 (см.), 5 (см.).

Решение

A = 3 a=3 a = 3
b = 4 b=4 b = 4
c = 5 c=5 c = 5

Найдем половину периметра p p p :

P = 1 2 (3 + 4 + 5) = 1 2 ⋅ 12 = 6 p=\frac{1}{2}(3+4+5)=\frac{1}{2}\cdot 12=6 p = 2 1 ​ (3 + 4 + 5 ) = 2 1 ​ ⋅ 1 2 = 6

Тогда, по формуле Герона, площадь треугольника:

S = 6 ⋅ (6 − 3) ⋅ (6 − 4) ⋅ (6 − 5) = 36 = 6 S=\sqrt{6\cdot(6-3)\cdot(6-4)\cdot(6-5)}=\sqrt{36}=6 S = 6 ⋅ (6 − 3 ) ⋅ (6 − 4 ) ⋅ (6 − 5 ) ​ = 3 6 ​ = 6 (см. кв.)

Ответ: 6 (см. кв.)

Формула площади треугольника по одной стороне и двум углам

S = a 2 2 ⋅ sin ⁡ β sin ⁡ γ sin ⁡ (β + γ) S=\frac{a^2}{2}\cdot \frac{\sin{\beta}\sin{\gamma}}{\sin(\beta+\gamma)} S = 2 a 2 sin (β + γ ) sin β sin γ ,

A a a - длина стороны треугольника;
β , γ \beta, \gamma β , γ - углы, прилежащие к стороне a a a .

Пример

Дано сторону треугольника, равную 10 (см.) и два прилежащих к ней угла по 30 градусов. Найти площадь треугольника.

Решение

A = 10 a=10 a = 1 0
β = 3 0 ∘ \beta=30^{\circ} β = 3 0
γ = 3 0 ∘ \gamma=30^{\circ} γ = 3 0

По формуле:

S = 1 0 2 2 ⋅ sin ⁡ 3 0 ∘ sin ⁡ 3 0 ∘ sin ⁡ (3 0 ∘ + 3 0 ∘) = 50 ⋅ 1 2 3 ≈ 14.4 S=\frac{10^2}{2}\cdot \frac{\sin{30^{\circ}}\sin{30^{\circ}}}{\sin(30^{\circ}+30^{\circ})}=50\cdot\frac{1}{2\sqrt{3}}\approx14.4 S = 2 1 0 2 sin (3 0 + 3 0 ) sin 3 0 sin 3 0 = 5 0 ⋅ 2 3 1 1 4 . 4 (см. кв.)

Ответ: 14.4 (см. кв.)

Формула площади треугольника по трем сторонам и радиусу описанной окружности

S = a ⋅ b ⋅ c 4 R S=\frac{a\cdot b\cdot c}{4R} S = 4 R a ⋅ b ⋅ c ​ ,

A , b , c a, b, c a , b , c - стороны треугольника;
R R R - радиус описанной окружности вокруг треугольника.

Пример

Числа возьмем из второй нашей задачи и добавим к ним радиус R R R окружности. Пусть он будет равен 10 (см.).

Решение

A = 3 a=3 a = 3
b = 4 b=4 b = 4
c = 5 c=5 c = 5
R = 10 R=10 R = 1 0

S = 3 ⋅ 4 ⋅ 5 4 ⋅ 10 = 60 40 = 1.5 S=\frac{3\cdot 4\cdot 5}{4\cdot 10}=\frac{60}{40}=1.5 S = 4 ⋅ 1 0 3 ⋅ 4 ⋅ 5 ​ = 4 0 6 0 = 1 . 5 (см. кв.)

Ответ: 1.5 (см.кв.)

Формула площади треугольника по трем сторонам и радиусу вписанной окружности

S = p ⋅ r S=p\cdot r

p p

p = a + b + c 2 p=\frac{a+b+c}{2}

a , b , c a, b, c

Пример

Пусть радиус вписанной окружности равен 2 (см.). Длины сторон возьмем из предыдущей задачи.

Решение

a = 3 a=3

p = 3 + 4 + 5 2 = 6 p=\frac{3+4+5}{2}=6

S = 6 ⋅ 2 = 12 S=6\cdot 2=12

Ответ: 12 (см. кв.)

Формула площади треугольника по двум сторонам и углу между ними

S = 1 2 ⋅ b ⋅ c ⋅ sin ⁡ (α) S=\frac{1}{2}\cdot b\cdot c\cdot\sin(\alpha)

b , c b, c

α \alpha

Пример

Стороны треугольника равны 5 (см.) и 6 (см.), угол между ними равен 30 градусов. Найти площадь треугольника.

Решение

b = 5 b=5

S = 1 2 ⋅ 5 ⋅ 6 ⋅ sin ⁡ (3 0 ∘) = 7.5 S=\frac{1}{2}\cdot 5\cdot 6\cdot\sin(30^{\circ})=7.5

Ответ: 7.5 (см. кв.)

Треугольник представляет собой геометрическое число, состоящее из трех сегментов, которые соединяют три точки, которые не лежат на одной линии. Точки, которые образуют треугольник, называются его точками, а сегменты бок о бок.

В зависимости от типа треугольника (прямоугольного, монохромного и т. Д.) Вы можете рассчитать сторону треугольника по-разному, в зависимости от исходных данных и условий проблемы.

Быстрая навигация для статьи

Чтобы вычислить стороны прямоугольного треугольника, используется теорема Пифагора, согласно которой квадрат гипотенузы равен сумме квадратов ноги.

Если мы отмечаем ноги буквами «a» и «b», а гипотенуза — «c», то страницы могут быть найдены со следующими формулами:

Если известны острые углы прямоугольного треугольника (a и b), его стороны могут быть найдены со следующими формулами:

Обрезанный треугольник

Треугольник называется равносторонним треугольником, в котором обе стороны одинаковы.

Как найти гипотенузу в двух ногах

Если буква «a» идентична одной и той же странице, «b» — основание, «b» — угол, противоположный основанию, «a» — смежный угол для вычисления страниц может использовать следующие формулы:

Два угла и боковая сторона

Если известны одна страница (c) и два угла (a и b) любого треугольника, формула синуса используется для вычисления оставшихся страниц:

Вы должны найти третье значение y = 180 — (a + b), потому что

сумма всех углов треугольника равна 180 °;

Две стороны и угол

Если известны две стороны треугольника (a и b) и угол между ними (y), для вычисления третьей стороны может быть использована теорема косинуса.

Как определить периметр прямоугольного треугольника

Треугольный треугольник представляет собой треугольник, один из которых равен 90 градусам, а два других — острые. расчет периметр такой треугольник в зависимости от количества известных сведений об этом.

Вам это понадобится

  • В зависимости от случая, навыки 2 трех сторон треугольника, а также один из его острых углов.

инструкции

первый Метод 1. Если известны все три страницы треугольник , Затем, независимо, перпендикулярно или не треугольно, периметр рассчитывается как: P = A + B + C, где возможно, c — гипотенуза; a и b — ноги.

второй Способ 2.

Если в прямоугольнике есть только две стороны, то, используя теорему Пифагора, треугольник может быть рассчитана по формуле: P = v (a2 + b2) + a + b или P = v (c2 — b2) + b + c.

третий Метод 3. Пусть гипотенуза c и острый угол? Учитывая прямоугольный треугольник, можно будет обнаружить периметр таким образом: P = (1 + sin?

четвёртая Метод 4. Говорят, что в правом треугольнике длина одной ноги равна а и, напротив, имеет острый угол. Затем вычислить периметр это треугольник будет выполняться по формуле: P = a * (1 / tg?

1 / сын? + 1)

пятые Способ 5.

Онлайн-расчет треугольника

Позвольте нашей ноге привести и быть включенным в нее, тогда диапазон будет рассчитываться как: P = A * (1 / CTG + 1 / + 1 cos?)

Похожие видео

Теорема Пифагора является основой любой математики. Определяет связь между сторонами истинного треугольника. Теперь указано 367 доказательств этой теоремы.

инструкции

первый Классическая школьная формулировка теоремы Пифагора звучит так: квадрат гипотенузы равен сумме квадратов ног.

Чтобы найти гипотенузу в прямоугольном треугольнике двух Catets, вы должны обратиться, чтобы построить квадрат длины ног, собрать их и взять квадратный корень из суммы. В оригинальной формулировке его высказывания рынок основан на гипотенузе, равном сумме квадратов из 2 квадратов производства Catete. Однако современная алгебраическая формулировка не требует введения представления области.

второй Например, прямоугольный треугольник, ноги которого составляют 7 см и 8 см.

Тогда, согласно теореме Пифагора, квадратная гипотенуза равна R + S = 49 + 64 = 113 см. Гипотенуза равна квадратному корню из числа 113.

Углы прямоугольного треугольника

Результатом стал необоснованный номер.

третий Если треугольники — ноги 3 и 4, то гипотенуза = 25 = 5. Когда вы извлекаете квадратный корень, вы получаете натуральное число. Числа 3, 4, 5 образуют пигагорейский триплет, так как они удовлетворяют соотношению x? + Y? = Z, что естественно.

Другими примерами пифагорейского триплета являются: 6, 8, 10; 5, 12, 13; 15, 20, 25; 9, 40, 41.

четвёртая В таком случае, если ноги идентичны друг другу, теорема Пифагора превращается в более примитивное уравнение. Например, пусть такая рука равна числу А и гипотенуза определена для С, а затем с? = Ap + Ap, C = 2A2, C = A? 2. В этом случае вам не нужен A.

пятые Теорема Пифагора — частный случай, который больше общей теоремы косинуса, который устанавливает связь между тремя сторонами треугольника для любого угла между двумя из них.

Совет 2: Как определить гипотенузу для ног и углов

Гипотенуза называется стороной в прямоугольном треугольнике, которая противоположна углу 90 градусов.

инструкции

первый В случае известных катетеров, а также острого угла прямоугольного треугольника может гипотенузы размер, равный отношению ноги к косинус / синус этого угла, если угол находился напротив / е включают в себя: Н = С1 (или С2) / грех, Н = С1 (или С2 ?) / cos ?. Пример: Пусть ABC задан неправильный треугольник с гипотенузой AB и под прямым углом C.

Пусть B равно 60 градусам и A 30 градусов. Длина ножки BC 8 см. Должна быть обнаружена длина гипотенузы AB. Для этого вы можете использовать один из вышеуказанных методов: AB = BC / cos60 = 8 см. AB = BC / sin30 = 8 см.

Гипотенуза — самая длинная сторона прямоугольника треугольник . Он расположен под прямым углом. Метод поиска гипотенузы прямоугольника треугольник в зависимости от исходных данных.

инструкции

первый Если ваши ноги перпендикулярны треугольник , то длина гипотенузы прямоугольника треугольник может быть обнаружено пифагорейским аналогом — квадрат длины гипотенузы равен сумме квадратов длин ног: c2 = a2 + b2, где a и b — длина ног правой треугольник .

второй Если известно, и одна из ног под острым углом, формула для нахождения гипотенузы будет зависеть от наличия или отсутствий под определенным углом по отношению к известному катету — смежно (катет расположена вблизи), или наоборот (расположено противоположный случай nego.V указанного угол равен доле гипотенуза ноги в косинусном угол: a = a / cos; E, с другой стороны, гипотенуза такая же, как отношение синусоидальных углов: da = a / sin.

Похожие видео

Полезные советы
Угловой треугольник, стороны которого связаны как 3: 4: 5, называемые египетской дельтой, из-за того, что эти фигуры широко используются архитекторами древнего Египта.

Это также самый простой пример треугольников Джерона, в котором страницы и область представлены целыми числами.

Треугольник называется прямоугольником, угол которого равен 90 °. Сторона, противоположная правому углу, называется гипотенузой, другая — ногами.

Если вы хотите найти, как прямоугольного треугольника, образованного некоторыми свойствами правильных треугольников, а именно тот факт, что сумма острых углов 90 °, который используется, и тот факт, что длина противоположной ноги составляет половину гипотенузы составляет 30 °.

Быстрая навигация для статьи

Обрезанный треугольник

Одним из свойств равного треугольника является то, что его два угла одинаковы.

Чтобы вычислить угол прямоугольного равного треугольника, вам нужно знать, что:

  • Это не хуже 90 °.
  • Значения острых углов определяются по формуле: (180 ° -90 °) / 2 = 45 °, т.е.

    Углы α и β равны 45 °.

Если известное значение одного из острых углов известно, другое можно найти по формуле: β = 180º-90º-α или α = 180º-90º-β.

Это соотношение наиболее часто используется, если один из углов составляет 60 ° или 30 °.

Ключевые понятия

Сумма внутренних углов треугольника равна 180 °.

Потому что это один уровень, два остаются острыми.

Вычислить треугольник онлайн

Если вы хотите их найти, вам нужно знать, что:

Другие способы

Значения острых углов прямоугольного треугольника могут быть вычислены из среднего значения — с линией от точки на противоположной стороне треугольника, а высота — линия представляет собой перпендикуляр, опущенной из гипотенузы под прямым углом.

Пусть медиана вытягивается от правого угла до середины гипотенузы, а h — высота. В этом случае оказывается, что:

  • sin α = b / (2 * s); sin β = a / (2 * s).
  • cos α = a / (2 * s); cos β = b / (2 * s).
  • sin α = h / b; sin β = h / a.

Две страницы

Если длины гипотенузы и одна из ног известны в прямоугольном треугольнике или с двух сторон, то для определения значений острых углов используются тригонометрические тождества:

  • α = arcsin (a / c), β = arcsin (b / c).
  • α = arcos (b / c), β = arcos (a / c).
  • α = arctg (a / b), β = arctg (b / a).

Длина прямоугольного треугольника

Площадь и площадь треугольника

периметр

Окружность любого треугольника равна сумме длин трех сторон. Общая формула для поиска треугольного треугольника:

где P — окружность треугольника, a, b и c его стороны.

Периметр равного треугольника можно найти путем последовательного объединения длин его сторон или умножения боковой длины на 2 и добавления к продукту длины основания.

Общая формула для нахождения равновесного треугольника будет выглядеть так:

где P — периметр равного треугольника, но либо b, b — основание.

Периметр равностороннего треугольника можно найти путем последовательного объединения длины его сторон или путем умножения длины любой страницы на 3.

Общая формула для нахождения обода равносторонних треугольников будет выглядеть так:

где P — периметр равностороннего треугольника, a — любая из его сторон.

область

Если вы хотите измерить область треугольника, вы можете сравнить ее с параллелограммом. Рассмотрим треугольник ABC:

Если мы возьмем тот же треугольник и зафиксируем его так, чтобы мы получили параллелограмм, мы получим параллелограмм той же высоты и основы, что и этот треугольник:

В этом случае общая сторона треугольников складывается вместе по диагонали формованного параллелограмма.

Из свойств параллелограмма. Известно, что диагонали параллелограмма всегда делятся на два равных треугольника, то поверхность каждого треугольника равна половине диапазона параллелограмма.

Так как площадь параллелограмма совпадает с продуктом его базовой высоты, площадь треугольника будет равна половине этого продукта. Таким образом, для ΔABC область будет одинаковой

Теперь рассмотрим прямоугольный треугольник:

Два одинаковых прямоугольных треугольника можно сгибать в прямоугольник, если он прислоняется к ним, что каждая другая гипотенуза.

Так как поверхность прямоугольника совпадает с поверхностью соседних сторон, площадь данного треугольника одинакова:

Отсюда можно заключить, что поверхность любого прямоугольного треугольника равна произведению ног, деленная на 2.

Из этих примеров можно сделать вывод, что поверхность каждого треугольника такая же, как произведение длины, а высота снижается до подложки, разделенной на 2.

Общая формула для поиска области треугольника будет выглядеть так:

где S — область треугольника, но его основание, но высота падает на дно a.

Прямоугольным называется треугольник, один из углов которого равен 90º. Сторона, противолежащая прямому углу, называется гипотенузой, а две другие – катетами.

Чтобы найти угол в прямоугольном треугольнике, используются некоторые свойства прямоугольных треугольников, а именно: то, что сумма острых углов равна 90º, а также то, что напротив катета, длина которого в два раза меньше гипотенузы, лежит угол, равный 30º.

Быстрая навигация по статье

Равнобедренный треугольник

Одно из свойств равнобедренного треугольника — два его угла равны. Для вычисление значений углов прямоугольного равнобедренного треугольника нужно знать, что:

  • Прямой угол равен 90º.
  • Значения острых углов определяются по формуле: (180º-90º)/2=45º, т.е. углы α и β равны 45º.

Если известна величина одного из острых углов, второй можно найти по формуле: β=180º-90º-α, или α=180º-90º-β. Чаще всего это соотношение используется, если один из углов равен 60º или 30º.

Ключевые понятия

Сумма внутренних углов треугольника равна 180º. Так как один угол прямой, два оставшихся будут острыми. Для их нахождения необходимо знать, что:

Другие способы

Величины острых углов прямоугольного треугольника можно вычислить, зная значение медианы – линии, проведенной из вершины к противоположной стороне треугольника, и высоты – прямой, представляющей собой перпендикуляр, опущенный из прямого угла на гипотенузу. Пусть s – медиана, проведенная из прямого угла к середине гипотенузы, h — высота. В таком случае получается, что:

  • sin α=b/(2*s); sin β =a/(2*s).
  • cos α=a/(2*s); cos β=b/(2*s).
  • sin α=h/b; sin β =h/a.

Две стороны

Если в прямоугольном треугольнике известны длины гипотенузы и одного из катетов, либо две стороны, для нахождения значений острых углов используются тригонометрические тождества:

  • α=arcsin(a/c), β=arcsin(b/c).
  • α=arcos(b/c), β=arcos(a/c).
  • α=arctg(a/b), β=arctg(b/a).