Чем отличаются проводники полупроводники и диэлектрики. ​Чем отличается кабель от провода и когда их нужно использовать. й способ отличия заземления от зануления

Люди частенько употребляют слова «провод» и «кабель», как синонимы. Эти два изделия имеют схожий внешний вид, но это не значит, что они совершенно одинаковые. Визуально они похожи, и с этим не поспоришь. Обычному потребителю вряд ли удастся визуально определить, какое изделие у него в руках.

В то время как специалист по электронике, электротехнике или другой профессионал, который по роду своей деятельности имеет дело с электричеством, без труда назовет . Возможно, некоторые обычные пользователи также способны понять суть этого отличия благодаря интуиции. Но сформулировать четко смогут не все.

Людям, которые не получили специальных знаний по электротехнике, но которым приходится сталкиваться с ремонтом бытовых электроприборов, будет очень полезно разобраться в терминологии и получить достоверную информацию.

Отличие кабеля от провода

Какое же у этих изделий сходство или различие? Визуально они очень похожи, но по документации эти изделия проходят под разными наименованиями – «провод» и «кабель». А если заглянуть в строительную смету, то там четко видно, что провод стоит дешевле, чем кабель.

В различной спецлитературе, учебниках и справочниках даются определения этим понятиям, но они довольно пространные. Зато в ТУ и ГОСТ есть характеристика изделий, относящихся к «проводу» или к «кабелю».

В ТУ зачастую можно найти лишь небольшие детали, по которым необходимо различать кабель и провод. Например, форма (плоская или круглая), толщина оболочки, изоляция, количество жил.

Если говорить о форме, то она не несет специфической нагрузке. От формы изделия зависит разве что удобство использования в конкретной ситуации. Определяющим фактом в делении на провод или кабель является спецификация. В ней указано конкретно, какое это изделие.

Слова « кабель» и «провод» часто используются в описаниях электропроводки и электрических сетей, когда имеется в виду проводник электрического тока. Может показаться, что эти два изделия – одно и тоже. Но между ними есть разница, которая будет описана ниже.

Что представляет собой провод ? В электротехнике так называют многожильный или одножильный проводник, который имеет легкую трубчатую изоляцию, либо вовсе ее не имеет.

Кабель представляет собой систему изолированных проводников, которые для удобства монтажа и эксплуатации, а также для защиты от влияния окружающей среды и механических повреждений объединены в единую конструкцию. Для повышения безопасности использования электрических проводов, для облегчения их совместной прокладки, для обеспечения защиты при эксплуатации в сложных условиях электрические провода собирают вместе. На них «одевается» дополнительный слой изоляции. Кабель защищают броневым кожухом при необходимости.

Итак, провод – это одни проводник, а кабель – это две или более изолированные жилы, объединенные вместе. Помимо изоляции жил кабель имеет изоляционную оболочку. Если на двух или более проводниках нет никакой изоляции, то перед вами просто проводник, по классификации – это «провод», а не «кабель».

Все провода и кабели можно разделить на несколько категорий в зависимости от характеристик изделия, особенностей конструкции и материалов, используемых при изготовлении.

Провода делятся на две группы:

  1. - многожильный провод, например, ПВ-3 – гибкий провод из меди;
  2. - из сплошной проволоки (монолит), например, ПВ-1 – однопроволочный провод из меди.

От коэффициента гибкости и уровня сопротивления зависят требования к эксплуатации и применение провода. Одножильные твердые провода могут быть как без оболочки, «голыми», так и в оболочке. Благодаря своей конструкции такой тип провода предполагает уменьшение сопротивления. Если за цель ставится увеличение производительности на высоких частотах, то обычно прибегают к использованию подобных твердых проводников.

Первый тип провода представляет собой множество токопроводящих жил. Этот провод состоит из нескольких нитей медной проволоки, которые сплетены в единое целое. При внешних механических воздействиях, а также при частых перегибах такое строение провода помогает увеличить срок эксплуатации изделия и достичь существенной гибкости.

Многожильная жила или монолит - какой кабель лучше

Кабель с одной жилой обычно называют жестким, а гибким считается кабель с многопроволочной жилой. Гибкость кабеля тем выше, чем тоньше каждая проволочка, и чем больше число этих проволочек в жиле.

В зависимости от гибкости кабель делится на семь классов. Самый гибкий – 7-ой класс, а моножила относится к 1-ому классу. Кабель высокого класса гибкости стоит дороже.

Назначение жесткого кабеля – это укладка в грунт, заделка его в стены, в то время как гибкий кабель применяют для подключения электроприборов или подвижных механизмов. С точки зрения эксплуатации не имеет значения, какой кабель жесткий или гибкий. Что касается монтажа, то все зависит от предпочтений конкретного электрика.

Важно отметить, что концы гибкого кабеля, впоследствии вставляемые в выключатели или в розетку, обязательно необходимо пропаять и обжать специальными трубчатыми наконечниками – оконцевателями. Жесткий кабель не требует такой процедуры.

Гибкий кабель более уместен для подключения осветительных устройств, так как эти устройства меняются довольно часто. Если взять для этих целей жесткий кабель, то при подключении нового электрооборудования велика вероятность, что он сломается.

Изоляция жил и оболочка кабеля

Двойная изоляция однозначно лучше. Как известно, срок службы кабеля в двойной изоляции составляет 30 лет, а в одинарной оболочке срок службы − до15 лет.

  • - для прокладки в сауне или в другом горячем помещении используются термостойкие кабели;
  • - маркировка «нг» означает, что кабель не поддерживает горение, но это не значит, что он термостойкий, то есть для высоких температур такой кабель не предназначен;
  • - есть кабели, которые могут «работать» при воздействии пламени в течение 120, 60 или 30 минут, на них вы увидите маркировку соответственно Е120, Е60 или Е30;
  • - кабель с полиэтиленовой оболочкой допустимо прокладывать как открытым способом, так и в грунте;
  • - кабель с ПВХ (поливинилхлорид) изоляцией можно прокладывать в кабельных каналах или в помещении.

Надеюсь данная статья помогла вам разобраться чем отличается кабель от провода. Если у Вас возникли вопросы оставляйте их в комментариях, с удовольствием на них отвечу.

Известно, что в веществе, помещенном в электрическое поле, при воздействии сил данного поля образуется движение свободных электронов, либо ионов по направлению сил поля. Другими словами, в веществе происходит возникновение электрического тока.

Свойство, определяющее способность вещества проводить электрический ток имеет название «электропроводность». Электропроводность напрямую зависима от концентрации заряженных частиц: чем выше концентрация, тем она электропроводность.

По данному свойству все вещества подразделяются на 3 типа:

  1. Проводники.
  2. Полупроводники.

Описание проводников

Проводники обладают наивысшей электропроводностью из всех типов веществ. Все проводники подразделяются на две большие подгруппы:

  • Металлы (медь, алюминий, серебро) и их сплавы.
  • Электролиты (водный раствор соли, кислоты).

В веществах первой подгруппы перемещаться способны только электроны, поскольку их связь с ядрами атомов слабая, в связи с чем, они достаточно просто от них отсоединяются. Так как в металлах возникновение тока связано с передвижением свободных электронов, то тип электропроводности в них называется электронным.

Из проводников первой подгруппы используют в обмотках электромашин, линиях электропередач, проводах. Важно отметить, что на электропроводность металлов оказывает влияние его чистота и отсутствие примесей.

В веществах второй подгруппы при воздействии раствора происходит распадение молекулы на положительный и отрицательный ион. Ионы перемещаются вследствие воздействия электрического поля. Затем, когда ток проходит через электролит, происходит осаждение ионов на электроде, который опускается в данный электролит. Процесс, когда из электролита под воздействием электрического тока выделяется вещество, получил название электролиз. Процесс электролиза принято применять, к примеру, когда добывается цветной металл из раствора его соединения, либо при покрытии металла защитным слоем иных металлов.

Описание диэлектриков

Диэлектрики также принято называть электроизоляционными веществами.

Все электроизоляционные вещества имеют следующую классификацию:

  • В зависимости от агрегатного состояния диэлектрики могут быть жидкими, твердыми и газообразными.
  • В зависимости от способы получения — естественными и синтетическими.
  • В зависимости от химического состава – органическими и неорганическими.
  • В зависимости от строения молекул – нейтральными и полярными.

К ним относятся газ (воздух, азот, элегаз), минеральное масло, любое резиновое и керамическое вещество. Данные вещества характеризуются способностью к поляризации в электрическом поле . Поляризация представляет собой образование на поверхности вещества зарядов с разными знаками.

В диэлектриках содержится малое количество свободных электронов, при этом электроны имеют сильную связь с ядрами атомов и только в редких случаях отсоединяются от них. Это означает, что данные вещества не обладают способностью проводить ток.

Данное свойство весьма полезно в сфере производства средств, используемых при защите от электрического тока: диэлектрические перчатки, коврики, ботинки, изоляторы на электрическое оборудование и т.п.

О полупроводниках

Полупроводник выступает в роли промежуточного вещества между проводником и диэлектриком . Самыми яркими представителями данного типа веществ являются кремний, германий, селен. Помимо этого, к данным веществам принято относить элементы четвертой группы периодической таблицы Дмитрия Ивановича Менделеева.

Полупроводники имеют дополнительную «дырочную» проводимость, в дополнение к электронной проводимости. Данный тип проводимости зависим от ряда факторов внешней среды, среди которых свет, температура, электрическое и магнитное поле.

В данных веществах имеются непрочные ковалентные связи. При воздействии одного из внешних факторов связь разрушается, после чего происходит образование свободных электронов. При этом, когда электрон отсоединяется, в составе ковалентной связи остается свободная «дырка». Свободные «дырки» притягивают соседние электроны, и так данное действие может производиться бесконечно.

Увеличить проводимость полупроводниковых веществ можно путем внесения в них различных примесей. Данный прием широко распространен в промышленной электронике: в диодах, транзисторах, тиристорах. Рассмотрим более подробно главные отличия проводников от полупроводников.

Чем отличается проводник от полупроводника?

Основным отличием проводника от полупроводника является способность к проводимости электрического тока. У проводника она на порядок выше.

Когда поднимается значение температуры, проводимость полупроводников также возрастает; проводимость проводников при повышении становится меньше.

В чистых проводниках в нормальных условиях при прохождении тока высвобождается гораздо большее количество электронов, нежели в полупроводниках. При этом, добавление примесей снижает проводимость проводников, но увеличивает проводимость полупроводников.

В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

Говоря простыми словами – проводник проводит ток.

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Современная кабельная промышленность располагает обширным ассортиментом различных проводов. И каждый вид провода предназначен для решения определенного круга задач.

Связавшись с электромонтажом на своем собственном участке или в собственной квартире, можно очень скоро заметить, что кабели и провода, используемые в монтаже - преимущественно медные, реже алюминиевые. Других материалов при всем разнообразии просто нет. Далее можно заметить, что различной бывает и структура жил этих кабелей: жила может состоять из множества проволочек, а может быть цельной. Структура жил влияет на гибкость кабеля, но никак не сказывается на его проводимости.

Кажется, что на том спектр и заканчивается. Но откуда же тогда такое разнообразие марок? ВВГ, NYM, СИП, ПВС, ШВВП - чем же они отличаются друг от друга? Большей частью - свойствами изоляции.

В этой статье мы рассмотрим основные распространенные разновидности электрических проводов, остановимся на их характеристиках, и отметим области их применения.

Для электрификации жилых домов используют разные, в основном медные, кабели, но в последние годы чаще всего можно встретить кабель ВВГ, включая его модифицированные версии.

Маркировка кабеля ВВГ означает: внешняя изоляция из поливинилхлорида, изоляция жил - также из поливинилхлорида, жилы кабеля гибкие. Хотя гибкость кабеля ВВГ относительна, ведь до сечения 25 кв. мм. включительно его жилы выполняются сплошными, а не многопроволочными.

Изоляция кабеля стойка к агрессивным средам, при этом довольно прочна и не поддерживает горение. Жилы могут быть как однопроволочными, так и многопроволочными, в зависимости от модификации кабеля ВВГ.

Главное назначение данного кабеля — передача и распределение электроэнергии в сетях с напряжением до 1000 вольт при промышленной частоте переменного тока 50 Гц. Для прокладки домашних сетей используют кабель ВВГ с сечением до 6 кв.мм, для электрификации частных домов — до 16 кв.мм. При монтаже допускается изгиб по минимальному радиусу в 10 размеров провода по ширине. Кабель поставляется в бухтах по 100 метров.

Среди разновидностей кабеля ВВГ встречаются: АВВГ — с алюминиевой жилой, ВВГнг — с огнеупорной оболочкой, ВВГп — плоское сечение, ВВГз — с добавлением ПВХ или в резиновой изоляции еще и между отдельными жилами.

ВВГ - самый распространенный медный кабель для внутреннего монтажа. Его прокладывают открыто, в коробах, закладывают в штробы. Изоляция ВВГ обеспечивает ему длительный срок службы - 30 лет. Количество жил кабеля ВВГ может соответствовать потребностям как трехфазной, так и однофазной сети: от двух до пяти.

Самый распространенный цвет внешней изоляции кабелей ВВГ - черный, но в последнее время и белый ВВГ совсем перестал быть редкостью. Цвет изоляции отдельных жил ВВГ соответствует стандартной маркировке: для жилы РЕ - желто-зеленый, для жилы N - голубой или белый с голубой полосой, а изоляция фазных жил наиболее часто выполняется чисто белой.

Модификации кабеля ВВГ с пометками «НГ» и «LS» отличаются, соответственно, неспособностью изоляции распространять горение и низким уровнем дымовыделения при воздействии огня. Существует и модификация ВВГ, отличающаяся способностью полностью противостоять открытому огню на протяжении какого-то определенного времени в минутах. Такая модификация обозначается латинскими буквами FR.

В быту уже практически не встречается кабель, аналогичный по характеристикам кабелю ВВГ, но имеющий жилы из алюминия - АВВГ. Его непопулярность обоснована ограничением на использование алюминия в распределительных сетях, а также недостатками алюминиевой кабельной продукции.

Кроме того, существует зарубежный аналог кабеля ВВГ, изготавливаемый по международному стандарту DIN. Речь идет о кабеле NYM. От ВВГ он отличается несколько улучшенными характеристиками, в частности, тем, что имеет специальный самозатухающий внутренний наполнитель, обеспечивающий герметизацию соединений.

Медные цельнопроволочные токопроводящие жилы имеет ПВХ-изоляцию, внешняя оболочка — также из ПВХ, не поддерживает горение, стойка к воздействию агрессивных сред. От одной до пяти жил сечением от 1,5 до 35 кв.мм. расположены плотно внутри белой защитной оболочки. Между проводниками имеется уплотнение мелованной резиной без галогенов, обеспечивающее кабелю термостойкость и прочность. Данный кабель применим в широком температурном диапазоне от -40°C до +70°C, влагостоек. Цвета изоляции жил: коричневый, черный, серый, синий, желто-зеленый.

Кабель NYM предназначен для монтажа силовых и осветительных сетей в промышленных и жилых зданиях при максимальном напряжении до 660 вольт (300/500/660). Кабель может быть проложен как внутри помещения, так и на открытом воздухе, с учетом, однако, того, что солнечный свет изоляции кабеля вредит, поэтому при монтаже на открытом воздухе его обязательно необходимо от солнечного света защищать, например поместив в гофру.

При монтаже допускается изгиб по радиусу не менее четырех диаметров кабеля. Поставляется в бухтах от 50 метров.

В отличие от ВВГ, кабель NYM всегда имеет только медные и только цельнопроволочные жилы (моножилы). Он достаточно удобен при обычном монтаже, поскольку имеет идеально круглое сечение, но по этой же причине его несколько неудобно закладывать в штукатурку или в бетон, в остальном похож на ВВГ.

Производство кабеля на видео:

Как отличить качественный кабель при его покупке:

СИП означает «самонесущий изолированный провод». Это означает, что СИП способен выдерживать воздействие существенных механических нагрузок. Если учесть и то, что изоляция СИПа выполнена из сшитого полиэтилена, невосприимчивого к воздействию влаги и прямых солнечных лучей, то очевидной становится сфера его использования: это уличный кабель для выполнения ЛЭП и . Он потихоньку вытесняет ранее широко использовавшиеся для этих целей неизолированные алюминиевые провода А и АС.

СИП - это алюминиевый кабель, жилы которого не имеют общей изоляции. Минимальное сечение жил СИП составляет 16 кв. мм., а максимальное - 150 кв. мм. В маркировке этого провода напрямую не указывается количество жил - приводится лишь номенклатурный номер, в котором и зашифрованы все данные.

К примеру, СИП-1 - это кабель из трех жил, одна из которых - нулевая несущая. СИП-2 - это кабель из четырех жил, одна из которых - нулевая несущая. А СИП-4 имеет в своем составе четыре токоведущих жилы, механическая нагрузка на которые распределена равномерно.

Поскольку СИП - очень специфичный кабель, то для монтажа с его использованием выпускается весь спектр специальной арматуры: ответвительные и соединительные зажимы и анкерные кронштейны.

ПВС - медный провод в изоляции из винила соединительный. Оболочка изготовлена так, что заполняет собой пространство между жилами, чем придает проводу высокую прочность. Количество жил — от двух до пяти, а сечение каждой — от 0,75 до 16 кв.мм.

Диапазон рабочих температур - от -25°C до +40°C, устойчив к химическим воздействиям, допускается 100% влажность окружающей среды. Провод выдерживает многократные циклы перегибов, до 3000 раз гарантированно. Цвет оболочки белый. Цвет жил: красный, черный, оранжевый, синий, серый, коричневый, зеленый, желтый, желто-зеленый.

Провод ПВС широко применяется в быту в качестве различных бытовых приборов, например электрочайников, а также в удлинителях. Он предназначен для работы в цепях переменного тока частотой 50 Гц с напряжением до 380 вольт, поэтому провод ПВС используют и в сетях, где требуется гибкий провод для прокладки проводки систем освещения, розеток и т. д. Гибкость — одно из важнейшых достоинств этого провода.

Изоляция ПВС, как внутренняя, так и внешняя, выполнена из поливинилхлорида. Внутренняя изоляция жил, как и у ВВГ, имеет стандартную маркировку. Но жилы ПВС - многопроволочные, поэтому это очень гибкий кабель. Необходимо только учесть, что жилы ПВС при монтаже надо обязательно оконцовывать или лудить.

С учетом того, что внешний слой винила у круглого ПВС имеет толщину до нескольких миллиметров, этот кабель отлично подходит для шнуров . То есть для их «соединения» с сетью. Поэтому его и называют соединительным.

ПВС относительно хорошо выдерживает механические нагрузки. Сечение его жил варьируется от 0,75 до 16 кв. мм., поэтому этот кабель можно использовать для изготовления любых удлинителей и переносок, не эксплуатирующихся в условиях низких температур. Ведь на морозе оболочка ПВС, к сожалению, просто лопается.

ШВВП - шнур в виниловой оболочке, с жилами в виниловой изоляции, плоский. В целом этот кабель похож на ВВГ, но, в отличие от последнего, ШВВП имеет гибкие многопроволочные медные жилы. Поэтому он, как и ПВС, часто . Однако изоляция ШВВП не отличается повышенной прочностью, и ответственные нагруженные линии этим шнуром не выполняются.

Соответственно, и сечения у ШВВП бывают только небольшие: 0,5 или 0,75 кв. мм. при количестве жил, равном двум или трем. Провод по форме плоский. Данный провод может эксплуатироваться при температурах от -25°C до +70°C, и выдерживает влажность до 98%. Легко сносит воздействие химически агрессивных сред. Цвет оболочки белый либо черный. Цвет жил: голубой, коричневый, черный, красный, желтый.

Кроме слабеньких удлинителей (которые, кстати, часто становятся причиной неприятностей в хозяйстве плохо знакомых с электричеством людей), ШВВП чаще всего используется в автоматизации, для питания слаботочных систем.

Также его применяют для присоединения к сети бытовых приборов, таких как холодильники, стиральные машины, приборы личной гигиены и т. д. Он способен работать в сетях переменного тока частотой 50 Гц при напряжении до 380 вольт. Весьма гибок, что очень важно в быту.

Основная функция провода ШВВП — присоединительный шнур: на одном конце прибор, на другом — вилка.

КГ - это гибкий медный резиновый кабель с многопроволочными жилами, сечение которых изменяется от 0,5 до 240 кв. мм. Число жил может составлять от одной до пяти. Резина изоляции жил — на основе натуральных каучуков.

Рабочий температурный диапазон кабеля от -60°C до +50°C при влажности до 98%. Изоляция кабеля КГ позволяет прокладывать его на открытом воздухе и даже на открытом солнечном свете. Жилы всегда многопроволочные, что и делает данный кабель гибким. Цветовая маркировка жил: голубой, черный, коричневый, желто-зеленый, серый.

КГ чаще всего используется в промышленных установках, там где необходимо обеспечить гибкий подвижный кабельный ввод.

Кабель КГ предназначен для питания переносных мобильных устройств, таких как тепловые пушки, сварочные аппараты, прожекторы и т. д., от сети переменного тока или от генераторов с частотой до 400 Гц при напряжении до 660 вольт, либо постоянным напряжением до 1000 вольт.

При монтаже допускается изгиб по радиусу не менее восьми наружных диаметров. Обычно поставляется в бухтах по 100 метров и более. Имеется модификация КГнг — в негорючей изоляции.

Очень важно, что резиновая изоляция этого кабеля даже на сильном морозе частично сохраняет свои свойства, и КГ практически всегда остается гибким, особенно если говорить о модификации ХЛ. Поэтому его часто используют для изготовления удлинителей, эксплуатирующихся в самых разных жестких условиях.

Силовой бронированный кабель с медными токопроводящими жилами, которые могут быть как однопроволочными, так и многопроволочными. От одной до шести жил сечением от 1,5 до 240 кв.мм. имеют ПВХ изоляцию и ПВХ оболочку. Особенность данного кабеля заключается в наличии между жилами и оболочкой слоя стальной двухленточной брони.

Кабель легко выдерживает температуру от -50°C до +50°C при влажности до 98%. Изоляция из ПВХ обеспечивает устойчивость к агрессивным средам. Цвет оболочки — черный. Цвет изоляции жил либо сплошной либо в сочетании основных маркировочных цветов с белым.

Бронированный кабель ВББШв предназначен для прокладки сетей электроснабжения отдельно стоящих зданий и сооружений, а также электрических установок, как под землей, так и в трубах на открытом воздухе (для защиты от солнечных лучей). Максимальное напряжение переменного тока — до 6000 вольт. Для постоянного тока применяют традиционно одножильные модификации данного кабеля.

При монтаже допускаются изгибы радиуса не менее десяти внешних диаметров кабеля. Поставляется традиционно в бухтах от 100 метров. Имеются модификации: АВББШв — алюминиевые жилы, ВББШвнг — негорючее исполнение, ВББШвнг-LS - негорючее исполнение с низким газовыделением в условиях повышенной температуры.

Плоский монтажный провод с медными однопроволочными жилами в ПВХ-изоляции и в ПВХ-оболочке. Жил может быть две или три, сечением от 1,5 до 6 кв.мм. Диапазон рабочих температур от -15°C до +50°C, допустимая влажность 98%. Стоек к агрессивным средам. Цвет оболочки белый или черный, цвет жил: белый, синий, желто-зеленый.

Предназначен для монтажа осветительных систем и проводки розеток в зданиях, при максимальном напряжении переменного тока промышленной частоты в 250 вольт. При монтаже допускаются изгибы радиусом не менее десятикратной ширины. Поставляется в бухтах по 100 и 200 метров.

Модификация ПБППг (ПУГНП) — многопроволочные жилы, при монтаже допускается изгиб по радиусу не менее шестикратной ширины. Модификация АПУНП — алюминиевые цельнопроволочные (только цельнопроволочные) жилы.

Плоский провод с однопроволочными медными жилами в ПВХ-изоляции с разделительными междужильными вставками. Жил может быть две либо три. Сечение жил от 0,75 до 6 кв.мм. Провод допускается эксплуатировать в температурном диапазоне от -50°C до +70°C.

Изоляция стойка к воздействиям агрессивных сред и к вибрациям, не поддерживает горение, а допустимая влажность окружающей среды составляет 100%. Цвет изоляции традиционно белый, дополнительной защитной оболочки не требуется.

Провод ППВ предназначен для монтажа стационарных осветительных систем и бытовых сетей электрификации, которые прокладываются внутри зданий. Максимальное напряжение составляет 450 вольт при переменном токе частотой до 400 Гц. При монтаже допускается изгиб радиусом не менее десятикратной ширины. Поставляется в бухтах по 100 метров. Модификация АППВ — с алюминиевыми жилами.

Алюминиевый одножильный провод круглого сечения в ПВХ изоляции. Встречается как многопроволочный, так и однопроволочный. Многопроволочная токопроводящая жила может иметь сечение от 25 до 95 кв.мм, а однопроволочная — от 2,5 до 16 кв.мм. Диапазон рабочих температур довольно широк — от -50°C до +70°C.

Изоляция устойчива к воздействиям агрессивных сред, а сам провод устойчив к вибрациям. Допускается влажность до 100%. Изоляция белого цвета.

Провод АПВ применяется при монтаже распределительных щитов, силовых сетей, осветительных систем, электрооборудования, например станков. Может работать под напряжением до 750 вольт при переменном токе частотой до 400 Гц, или при постоянном токе с напряжением до 1000 вольт.

Прокладка допускается в закрытых помещениях, либо вне помещений, но с обязательным условием — с защитой от прямых солнечных лучей, в трубе, в гофре, в специальном канале и т. д. При монтаже допустим изгиб радиусом не менее десятикратного диаметра провода. Поставляется в бухтах от 100 метров.

Медный одножильный провод круглого сечения в ПВХ-изоляции. Минимальное количество проволок в жиле — одна, минимальное сечение одной проволоки составляет 0,5 кв.мм. Многопроволочная жила может иметь сечение от 16 до 120 кв.мм, а однопроволочная — от 0,5 до 10 кв.мм.

Диапазон допустимых эксплуатационных температур — от -50°C до +70°C, изоляция стойка к химическим воздействиям, провод устойчив к механическим вибрациям, допустимая влажность — до 100%. Цвет изоляции может быть разным: красный, белый, синий, черный, желто-зеленый.

Применяется для электрификации в различных сферах, начиная с монтажа распределительных щитов и осветительных систем, заканчивая намоткой обмоток трансформаторов для бытовых нужд. Провод рассчитан на напряжение до 750 вольт при переменном токе частотой до 400 Гц, и до 1000 вольт при постоянном токе.

Прокладывают либо в помещениях, либо во внешних условиях, но в защитных трубах, гофрах, либо в кабельных каналах. Недопустима открытая прокладка в условиях постоянного нахождения провода под действием солнечных лучей.

Радиус изгиба не менее десятикратного диаметра провода. Поставляется в бухтах от 100 метров. Провод АПВ является модификацией провода ПВ1, но только с алюминием в качестве материала жилы.

Медный одножильный провод круглого сечения в ПВХ-изоляции. Многопроволочная жила провода может иметь сечение от 0,5 до 400 кв.мм. Диапазон безопасных рабочих температур — от -50°C до +70°C, изоляция стойка к воздействиям агрессивных сред, допустимая влажность — до 100%. Цвет изоляции может быть разным: красный, синий, белый, черный, желто-зеленый.

Применяется для электрификации в различных сферах: монтаж распределительных щитов, проводка осветительных систем, электропроводка для питания оборудования в промышленных цехах и т. д., то есть там, где требуется многократный изгиб. Провод рассчитан на напряжение до 750 вольт при переменном токе частотой до 400 Гц, и до 1000 вольт при постоянном токе.

Провод ПВ3 прокладывают либо в помещениях, либо во внешних условиях, но в защитных трубах, гофрах, либо в кабельных каналах. Идеален при прокладке проводки по стоякам в домах. Кроме того, этот провод популярен в автомобильном тюнинге. Недопустима открытая прокладка в условиях постоянного нахождения провода под действием солнечных лучей. Радиус изгиба не менее пятикратного диаметра провода. Поставляется в бухтах от 100 метров.

Надеемся, что данная статья помогла вам получить общее представление о наиболее распространенных электрических проводах, об их характеристиках и областях применения, и теперь вы сможете без труда правильно подобрать провод подходящего типа для своих нужд.

Что такое полупроводник и с чем его едят?

Полупроводник - материал, без которого не мыслим современный мир техники и электроники. Полупроводники проявляют свойства металов и неметаллов в тех или иных условиях. По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками и диэлектриками. Полупроводник отличается от проводников сильной зависимостью удельной проводимости от наличия в кристаллической решетки элементов-примесей (примесные элементы) и концентрации этих элементов, а также от температуры и воздействия различных видов излучения.
Основное свойство полупроводника - увеличение электрической проводимости с увеличением температуры.
Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия - к узкозонным. Ширина запрещённой зоны - это ширина энергетического зазора между дном зоны проводимости и потолком валентной зоны, в котором отсутствуют разрешённые состояния для электрона.
Величина ширины запрещённой зоны имеет важное значение при генерации света в светодиодах и полупроводниковых лазерах и определяет энергию испускаемых фотонов.

К числу полупроводников относятся многие химические элементы: Si кремний, Ge германий, As мышьяк, Se селен, Te теллур и другие, а также всевозможные сплавы и химические соединения, например: йодид кремния, арсенид галлия, теллурит ртути и др.). В общем почти все неорганические вещества окружающего нас мира являются полупроводниками. Самым распространённым в природе полупроводником является кремний, составляющий по приблизительным подсчетам почти 30 % земной коры.

В зависимости от того, отдаёт ли атом примесного элемента электрон или захватывает его, примесные атомы называют донорными или акцепторными. Донорские и акцепторные свойства атома примесного элемента зависят также того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.
Как выше упоминалось, проводниковые свойства полупроводников сильно зависит от температуры, а при достижениитемпературы абсолютного нуля (-273°С) полупроводники имеют свойства диэлектриков.

По виду проводимости полупроводники подразделяют на n-тип и р-тип

Полупроводник n-типа

По виду проводимости полупроводники подразделяют на n-тип и р-тип.

Полупроводник n-типа имеет примесную природу и проводит электрический ток подобно металлам. Примесные элементы, которые добавляют в полупроводники для получения полупроводников n-типа, называются донорными. Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд, переносимый свободным электроном.

Теория процесса переноса заряда описывается следующим образом:

В четырёхвалентный Si кремний добавляют примесный элемент, пятивалентный As мышьяка. В процессе взаимодействия каждый атом мышьяка вступает в ковалентную связь с атомами кремния. Но остается пятый свободный атом мышьяка, которому нет места в насыщенных валентных связях, и он переходит на дальнюю электронную орбиту, где для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный, способный переносить заряд. Таким образом перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам.
Также сурьмой Sb улучшают свойства одного из самых важных полупроводников – германия Ge.

Полупроводник p-типа

Полупроводник p-типа, кроме примесной основы, характеризуется дырочной природой проводимости. Примеси, которые добавляют в этом случае, называются акцепторными.
«p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей.
Например в полупроводник, четырёхвалентный Si кремний, добавляют небольшое количество атомов трехвалентного In индия. Индий в нашем случае будет примесным элементом, атомы которого устанавливает ковалентную связь с тремя соседними атомами кремния. Но у кремния остается одна свободная связь в то время, как у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, образуя так называемую дырку и соответственно дырочный переход.
По такой же схеме In ндий сообщает Ge германию дырочную проводимость.

Исследуя свойства полупроводниковых элементов и материалов, изучая свойства контакта проводника и полупроводника, экспериментируя в изготовлении полупроводниковых материалов, О.В. Лосев 1920-х годах создал прототип современного светодиода.