Умножение алгебраических дробей. Умножение и деление алгебраических дробей Правило умножения алгебраических дробей примеры


Пример.

Найдите произведение алгебраических дробей и .

Решение.

Перед выполнением умножения дробей, разложим на множители многочлен в числителе первой дроби и знаменателе второй. В этом нам помогут соответствующие формулы сокращенного умножения : x 2 +2·x+1=(x+1) 2 и x 2 −1=(x−1)·(x+1) . Таким образом, .

Очевидно, полученную дробь можно сократить (этот процесс мы разбирали в статье сокращение алгебраических дробей).

Осталось лишь записать результат в виде алгебраической дроби, для чего нужно выполнить умножение одночлена на многочлен в знаменателе: .

Обычно решение записывают без пояснений в виде последовательности равенств:

Ответ:

.

Иногда с алгебраическими дробями, которые нужно умножить или разделить, следует выполнить некоторые преобразования, чтобы выполнение указанных действий проходило проще и быстрее.

Пример.

Разделите алгебраическую дробь на дробь .

Решение.

Упростим вид алгебраической дроби , избавившись от дробного коэффициента. Для этого умножим ее числитель и знаменатель на 7 , что нам позволяет сделать основное свойство алгебраической дроби , имеем .

Теперь стало видно, что знаменатель полученной дроби и знаменатель дроби , на которую нам нужно выполнить деление, являются противоположными выражениями. Изменим знаки числителя и знаменателя дроби , имеем .

На данном уроке будут рассмотрены правила умножения и деления алгебраических дробей, а также примеры на применение данных правил. Умножение и вычитание алгебраических дробей не отличается от умножения и деления обыкновенных дробей. Вместе с тем, наличие переменных приводит к несколько более сложным способам упрощения полученных выражений. Несмотря на то, что умножение и деление дробей выполняется проще, чем их сложение и вычитание, к изучению данной темы необходимо подойти крайне ответственно, поскольку в ней существует много «подводных камней», на которые обычно не обращают внимания. В рамках урока мы не только изучим правила умножения и деления дробей, но и разберём нюансы, которые могут возникнуть при их применении.

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Умножение и деление алгебраических дробей

1. Правила умножения и деления обыкновенных и алгебраических дробей

Правила умножения и деления алгебраических дробей абсолютно аналогичны правилам умножения и деления обыкновенных дробей. Напомним их:

То есть, для того, чтобы умножить дроби, необходимо умножить их числители (это будет числитель произведения), и умножить их знаменатели (это будет знаменатель произведения).

Деление на дробь - это умножение на перевёрнутую дробь, то есть, для того, чтобы разделить две дроби, необходимо первую из них (делимое) умножить на перевёрнутую вторую (делитель).

2. Частные случаи применения правил умножения и деления дробей

Несмотря на простоту данных правил, многие при решении примеров по данной теме допускают ошибки в ряде частных случаев. Рассмотрим подробнее эти частные случаи:

Во всех этих правилах мы пользовались следующим фактом: .

3. Примеры умножения и деления обыкновенных дробей

Решим несколько примеров на умножение и деление обыкновенных дробей, чтобы вспомнить, как пользоваться указанными правилами.

Пример 1

Примечание: при сокращении дробей мы пользовались разложением числа на простые множители. Напомним, что простыми числами называются такие натуральные числа, которые делятся только на и на само себя. Остальные числа называются составными . Число не относится ни к простым, ни к составным. Примеры простых чисел: .

Пример 2

Рассмотрим теперь один из частных случаев с обыкновенными дробями.

Пример 3

Как видим, умножение и деление обыкновенных дробей, в случае правильного применения правил, не является сложным.

4. Примеры умножения и деления алгебраических дробей (простые случаи)

Рассмотрим умножение и деление алгебраических дробей.

Пример 4

Пример 5

Отметим, что сокращать дроби после умножения можно и даже нужно по тем же правилам, которые мы до этого рассматривали на уроках, посвящённых сокращению алгебраических дробей. Рассмотрим несколько простых примеров на частные случаи.

Пример 6

Пример 7

Рассмотрим теперь несколько более сложных примеров на умножение и деление дробей.

Пример 8

Пример 9

Пример 10

Пример 11

Пример 12

Пример 13

5. Примеры умножения и деления алгебраических дробей (сложные случаи)

До этого мы рассматривали дроби, в которых и числитель, и знаменатель являлись одночленами. Однако в ряде случаев необходимо перемножить или поделить дроби, числители и знаменатели которых являются многочленами. В этом случае правила остаются такими же, а для сокращения необходимо использовать формулы сокращённого умножения и вынесение за скобки.

Пример 14

На данном уроке будут рассмотрены правила умножения и деления алгебраических дробей, а также примеры на применение данных правил. Умножение и деление алгебраических дробей не отличается от умножения и деления обыкновенных дробей. Вместе с тем, наличие переменных приводит к несколько более сложным способам упрощения полученных выражений. Несмотря на то, что умножение и деление дробей выполняется проще, чем их сложение и вычитание, к изучению данной темы необходимо подойти крайне ответственно, поскольку в ней существует много «подводных камней», на которые обычно не обращают внимания. В рамках урока мы не только изучим правила умножения и деления дробей, но и разберём нюансы, которые могут возникнуть при их применении.

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Умножение и деление алгебраических дробей

Правила умножения и деления алгебраических абсолютно аналогичны правилам умножения и деления обыкновенных дробей. Напомним их:

То есть, для того, чтобы умножить дроби, необходимо умножить их числители (это будет числитель произведения), и умножить их знаменатели (это будет знаменатель произведения).

Деление на дробь - это умножение на перевёрнутую дробь, то есть, для того, чтобы разделить две дроби, необходимо первую из них (делимое) умножить на перевёрнутую вторую (делитель).

Несмотря на простоту данных правил, многие при решении примеров по данной теме допускают ошибки в ряде частных случаев. Рассмотрим подробнее эти частные случаи:

Во всех этих правилах мы пользовались следующим фактом: .

Решим несколько примеров на умножение и деление обыкновенных дробей, чтобы вспомнить, как пользоваться указанными правилами.

Пример 1

Примечание: при сокращении дробей мы пользовались разложением числа на простые множители. Напомним, что простыми числами называются такие натуральные числа, которые делятся только на и на само себя. Остальные числа называются составными . Число не относится ни к простым, ни к составным. Примеры простых чисел: .

Пример 2

Рассмотрим теперь один из частных случаев с обыкновенными дробями.

Пример 3

Как видим, умножение и деление обыкновенных дробей, в случае правильного применения правил, не является сложным.

Рассмотрим умножение и деление алгебраических дробей.

Пример 4

Пример 5

Отметим, что сокращать дроби после умножения можно и даже нужно по тем же правилам, которые мы до этого рассматривали на уроках, посвящённых сокращению алгебраических дробей. Рассмотрим несколько простых примеров на частные случаи.

Пример 6

Пример 7

Рассмотрим теперь несколько более сложных примеров на умножение и деление дробей.

Пример 8

Пример 9

Пример 10

Пример 11

Пример 12

Пример 13

До этого мы рассматривали дроби, в которых и числитель, и знаменатель являлись одночленами. Однако в ряде случаев необходимо перемножить или поделить дроби, числители и знаменатели которых являются многочленами. В этом случае правила остаются такими же, а для сокращения необходимо использовать формулы сокращённого умножения и вынесение за скобки.

Пример 14

Пример 15

Пример 16

Пример 17

Пример 18

В этой статье мы продолжаем изучение основных действий, которые можно выполнять с алгебраическими дробями. Здесь мы рассмотрим умножение и деление: сначала выведем нужные правила, а затем проиллюстрируем их решениями задач.

Как правильно делить и умножать алгебраические дроби

Чтобы выполнить умножение алгебраических дробей или разделить одну дробь на другую, нам нужно использовать те же правила, что и для обыкновенных дробей. Вспомним их формулировки.

Когда нам надо умножить одну обыкновенную дробь на другую, мы выполняем отдельно умножение числителей и отдельно знаменателей, после чего записываем итоговую дробь, расставив по местам соответствующие произведения. Пример такого вычисления:

2 3 · 4 7 = 2 · 4 3 · 7 = 8 21

А когда нам надо разделить обыкновенные дроби, мы делаем это с помощью умножения на дробь, обратную делителю, например:

2 3: 7 11 = 2 3 · 11 7 = 22 7 = 1 1 21

Умножение и деление алгебраических дробей выполняется в соответствии с теми же принципами. Сформулируем правило:

Определение 1

Чтобы перемножить две и более алгебраические дроби, нужно перемножить отдельно числители и знаменатели. Результатом будет дробь, в числителе которой будет стоять произведение числителей, а в знаменателе – произведение знаменателей.

В буквенном виде правило можно записать как a b · c d = a · c b · d . Здесь a , b , c и d будут представлять из себя определенные многочлены, причем b и d не могут быть нулевыми.

Определение 2

Для того чтобы разделить одну алгебраическую дробь на другую, нужно выполнить умножение первой дроби на дробь, обратную второй.

Это правило можно также записать как a b: c d = a b · d c = a · d b · c . Буквы a , b , c и d здесь означают многочлены, из которых a , b , c и d не могут быть нулевыми.

Отдельно остановимся на том, что такое обратная алгебраическая дробь. Она представляет из себя такую дробь, которая при умножении на исходную дает в итоге единицу. То есть такие дроби будут аналогичны взаимно обратным числам. Иначе можно сказать, что обратная алгебраическая дробь состоит из таких же значений, что и исходная, однако числитель и знаменатель у нее меняются местами. Так, по отношению к дроби a · b + 1 a 3 дробь a 3 a · b + 1 будет обратной.

Решение задач на умножение и деление алгебраических дробей

В этом пункте мы посмотрим, как правильно применять озвученные выше правила на практике. Начнем с простого и наглядного примера.

Пример 1

Условие: умножьте дробь 1 x + y на 3 · x · y x 2 + 5 , а потом разделите одну дробь на другую.

Решение

Сначала выполним умножение. Согласно правилу, нужно отдельно перемножить числители и знаменатели:

1 x + y · 3 · x · y x 2 + 5 = 1 · 3 · x · y (x + y) · (x 2 + 5)

Мы получили новый многочлен, который нужно привести к стандартному виду. Заканчиваем вычисления:

1 · 3 · x · y (x + y) · (x 2 + 5) = 3 · x · y x 3 + 5 · x + x 2 · y + 5 · y

Теперь посмотрим, как правильно разделить одну дробь на другую. По правилу нам надо заменить это действие умножением на обратную дробь x 2 + 5 3 · x · y:

1 x + y: 3 · x · y x 2 + 5 = 1 x + y · x 2 + 5 3 · x · y

Приведем полученную дробь к стандартному виду:

1 x + y · x 2 + 5 3 · x · y = 1 · x 2 + 5 (x + y) · 3 · x · y = x 2 + 5 3 · x 2 · y + 3 · x · y 2

Ответ: 1 x + y · 3 · x · y x 2 + 5 = 3 · x · y x 3 + 5 · x + x 2 · y + 5 · y ; 1 x + y: 3 · x · y x 2 + 5 = x 2 + 5 3 · x 2 · y + 3 · x · y 2 .

Довольно часто в процессе деления и умножения обыкновенных дробей получаются результаты, которые можно сократить, например, 2 9 · 3 8 = 6 72 = 1 12 . Когда мы выполняем эти действия с алгебраическими дробями, мы также можем получить сократимые результаты. Для этого полезно предварительно разложить числитель и знаменатель исходного многочлена на отдельные множители. Если нужно, перечитайте статью о том, как правильно это делать. Разберем пример задачи, в которой нужно будет выполнить сокращение дробей.

Пример 2

Условие: перемножьте дроби x 2 + 2 · x + 1 18 · x 3 и 6 · x x 2 - 1 .

Решение

Перед тем, как вычислять произведение, разложим на отдельные множители числитель первой исходной дроби и знаменатель второй. Для этого нам потребуются формулы сокращенного умножения. Вычисляем:

x 2 + 2 · x + 1 18 · x 3 · 6 · x x 2 - 1 = x + 1 2 18 · x 3 · 6 · x (x - 1) · (x + 1) = x + 1 2 · 6 · x 18 · x 3 · x - 1 · x + 1

У нас получилась дробь, которую можно сократить:

x + 1 2 · 6 · x 18 · x 3 · x - 1 · x + 1 = x + 1 3 · x 2 · (x - 1)

О том, как это делается, мы писали в статье, посвященной сокращению алгебраических дробей.

Перемножив одночлен и многочлен в знаменателе, мы получим нужный нам результат:

x + 1 3 · x 2 · (x - 1) = x + 1 3 · x 3 - 3 · x 2

Вот запись всего решения без пояснений:

x 2 + 2 · x + 1 18 · x 3 · 6 · x x 2 - 1 = x + 1 2 18 · x 3 · 6 · x (x - 1) · (x + 1) = x + 1 2 · 6 · x 18 · x 3 · x - 1 · x + 1 = = x + 1 3 · x 2 · (x - 1) = x + 1 3 · x 3 - 3 · x 2

Ответ: x 2 + 2 · x + 1 18 · x 3 · 6 · x x 2 - 1 = x + 1 3 · x 3 - 3 · x 2 .

В некоторых случаях исходные дроби перед умножением или делением удобно преобразовать, чтобы дальнейшие вычисления стали быстрее и проще.

Пример 3

Условие: разделите 2 1 7 · x - 1 на 12 · x 7 - x .

Решение: начнем с упрощения алгебраической дроби 2 1 7 · x - 1 , чтобы избавиться от дробного коэффициента. Для этого умножим обе части дроби на семь (это действие возможно благодаря основному свойству алгебраической дроби). В итоге у нас получится следующее:

2 1 7 · x - 1 = 7 · 2 7 · 1 7 · x - 1 = 14 x - 7

Видим, что знаменатель дроби 12 · x 7 - x , на которую нам нужно разделить первую дробь, и знаменатель получившейся дроби являются противоположными друг другу выражениями. Изменив знаки числителя и знаменателя 12 · x 7 - x , получим 12 · x 7 - x = - 12 · x x - 7 .

После всех преобразований можем наконец перейти непосредственно к делению алгебраических дробей:

2 1 7 · x - 1: 12 · x 7 - x = 14 x - 7: - 12 · x x - 7 = 14 x - 7 · x - 7 - 12 · x = 14 · x - 7 x - 7 · - 12 · x = = 14 - 12 · x = 2 · 7 - 2 · 2 · 3 · x = 7 - 6 · x = - 7 6 · x

Ответ: 2 1 7 · x - 1: 12 · x 7 - x = - 7 6 · x .

Как умножить или разделить алгебраическую дробь на многочлен

Чтобы выполнить такое действие, мы можем воспользоваться теми же правилами, что мы приводили выше. Предварительно нужно представить многочлен в виде алгебраической дроби с единицей в знаменателе. Это действие аналогично преобразованию натурального числа в обыкновенную дробь. Например, можно заменить многочлен x 2 + x − 4 на x 2 + x − 4 1 . Полученные выражения будут тождественно равны.

Пример 4

Условие: разделите алгебраическую дробь на многочлен x + 4 5 · x · y: x 2 - 16 .

Решение

x + 4 5 · x · y: x 2 - 16 = x + 4 5 · x · y: x 2 - 16 1 = x + 4 5 · x · y · 1 x 2 - 16 = = x + 4 5 · x · y · 1 (x - 4) · x + 4 = (x + 4) · 1 5 · x · y · (x - 4) · (x + 4) = 1 5 · x · y · x - 4 = = 1 5 · x 2 · y - 20 · x · y

Ответ: x + 4 5 · x · y: x 2 - 16 = 1 5 · x 2 · y - 20 · x · y .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Электронная рабочая тетрадь по алгебре для 8 класса
Мультимедийное учебное пособие для 8 класса "Алгебра за 10 минут"

Предварительное разложение алгебраической дроби на множители

Перед началом работы с дробями, а именно на умножении и делении, желательно произвести разложение числителя и знаменателя на множители. Это облегчит разложение на множители дроби, которая получится в результате математического действия.

Например, дана дробь:

$\frac{8x+8y}{16}$.


Произведем тождественное преобразование, то есть разложим числитель на множители.

$\frac{8x+8y}{16}=\frac{8(x+y)}{16}$.


Или, например, дана такая дробь:

$\frac{x^2-y^2}{x+1}$.


Её лучше привести к такому виду:

$\frac{x^2-y^2}{x+1}=\frac{(x+y)(x-y)}{x+1}$.


Не забываем про свойство:

$(b-a)^2=(a-b)^2$.

Умножение алгебраических дробей с одинаковыми и разными знаменателями

Умножение алгебраических дробей производится так же, как и умножение обыкновенных дробей. Перемножаются между собой числители и знаменатели.
В виде формулы это можно представить следующим образом:

$\frac{a}{b}*\frac{c}{d}=\frac{ac}{bd}$


Рассмотрим несколько примеров.

Пример 1.

Вычислите:

$\frac{5x+5y}{x-y}*\frac{x^2-y^2}{10x}$.


Разложим дробь на множители.

$\frac{5x+5y}{x-y}*\frac{x^2-y^2}{10x}=\frac{5(x+y)}{x-y}*\frac{(x-y)(x+y)}{10x}$.


Приведем обе дроби к общему знаменателю (вспомним урок: "Сложение и вычитание дробей ", где были подсказки, как лучше и проще подбирать общий знаменатель). В итоге получим дробь.

$\frac{5(x+y)(x-y)(x+y)}{(x-y)*10x}=\frac{(x+y)^2}{2x}$


Пример 2.

Вычислите:

$\frac{7a^3b^5}{3a-3b}*\frac{6b^2-12ab+6a^2}{49a^4b^5}$.


Разложим на составные множители и сократим дробь.

$\frac{7a^3b^5}{3a-3b}*\frac{6(b^2-2ab+a^2)}{49a^4b^5}=\frac{7a^3b^5*6(b-a)^2}{3(a-b)*49a^4b^5}=\frac{2(b-a)^2}{7a(a-b)}$.

Деление алгебраических дробей с одинаковыми и разными знаменателями

Деление дробей производится так же, как и деление обыкновенных дробей, то есть нужно дробь "делителя" перевернуть и произвести умножение.

$\frac{a}{b}:\frac{c}{d}=\frac{ad}{bc}$


Рассмотрим примеры.

Пример 3.

Выполните действия:

$\frac{x^3-1}{8y}:\frac{x^2+x+1}{16y^2}$.


Разложим дроби на множители.

$\frac{x^3-1}{8y}:\frac{x^2+x+1}{16y^2}=\frac{(x-1)(x^2+x+1)}{8y}:\frac{x^2+x+1}{16y^2}$.


Теперь переворачиваем дробь и умножаем.

$\frac{(x-1)(x^2+x+1)*16y^2}{8y*(x^2+x+1)}=2y*(x-1)$.


Пример 4.

Вычислите:

$\frac{a^4-b^4}{ab+2b-3a-6}:\frac{b-a}{a+2}$.


Разложим на множители и сгруппируем многочлены.

$\frac{a^4-b^4}{ab+2b-3a-6}:\frac{b-a}{a+2}=\frac{(a^2-b^2)(a^2+b^2)}{(ab+2b)-(3a+6)}:\frac{b-a}{a+2}=$

$\frac{(a-b)(a+b)(a^2+b^2)}{b(a+2)-3(a+2)}:\frac{b-a}{a+2}$.


Переворачиваем и умножаем дроби.

$\frac{(a-b)(a+b)(a^2+b^2)(a+2)}{(a+2)(b-3)(b-a)}=\frac{-(a+b)(a^2+b^2)}{(b-3)}$.